CAREER: Open-source GPU-accelerated computational infrastructure for coastal fluid-structure interaction in extreme hydrodynamic conditions

职业:极端​​水动力条件下沿海流固耦合的开源 GPU 加速计算基础设施

基本信息

  • 批准号:
    2338313
  • 负责人:
  • 金额:
    $ 49.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2028-12-31
  • 项目状态:
    未结题

项目摘要

The availability of widely accessible software and procedures for predicting the intricate response of coastal structures to climate-induced extreme hydrodynamic events is paramount for supporting the development of climate-resilient coastal communities. However, the current scientific toolbox for evaluating the response of coastal structural systems to extreme hydrodynamic loads consists of empirical models lacking a solid theoretical foundation, outdated design codes, and oversimplified numerical frameworks that misbehave in scenarios beyond their limited scope. This project aims to address this deficiency by pioneering the development of novel high-fidelity, physics-based numerical methodologies, and open-source, high-performance computational software infrastructure for fluid-structure interaction simulation between extreme hydrodynamic events and coastal structures. This research enables the advancement of knowledge in the field of coastal climate resilience. It aligns with NSF's commitment to promoting the progress of science and facilitating breakthroughs in climate change and resilience. The wide dissemination of the developed computational tools holds the potential to deliver societal and economic benefits by enabling the design of more climate-resilient coastal infrastructure. Moreover, it has the potential to impact multiple scientific fields that involve fluid-structure interaction. Integrated into this research are several education and outreach activities that involve training high-school teachers in climate resilience issues, engaging diverse student cohorts in project participation, and enhancing the curriculum. These activities promote climate change awareness, cultivate interdisciplinary and computational thinking, and foster diversity and inclusion.The technical objective of this project is the development of high-fidelity, physics-based computational tools for coastal fluid-structure interaction under extreme hydrodynamic events. These tools advance mathematical methods, algorithms, and computational software on coastal climate resilience. Specifically, the project introduces the following cyberinfrastructure innovations. First, it employs Smoothed Particle Hydrodynamics to simulate violent free-surface flows and extreme structural deformations, including fragmentation. This approach departs from previous numerical methods on coastal fluid-structure interaction that often relied on mesh-based techniques or rigid body assumptions to represent solid structures. Furthermore, it utilizes a novel pressure projection method that facilitates an efficient and accurate two-way coupling of the fluid and structural domains, leading to high predictive accuracy. The research also delves into advanced numerical approaches for modeling structural damage and fracture. These include phase-field, peridynamics, and microplane models, that result in advanced numerical capabilities for simulating structural failure. In addition to these computational developments, the project uses water flume facilities to provide experimental validation for the developed computational tools. Lastly, the culmination of these computational and mathematical innovations, along with a sophisticated pre-processing module tailored to civil structures, are combined to develop a GPU-accelerated software platform made available to the research community through open-source cloud-based repositories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
提供可广泛使用的软件和程序来预测沿海结构对气候引起的极端水动力事件的复杂响应对于支持气候适应型沿海社区的发展至关重要。然而,当前用于评估海岸结构系统对极端水动力载荷响应的科学工具箱由缺乏坚实理论基础的经验模型、过时的设计规范以及在超出其限制范围的情况下表现不佳的过于简化的数值框架组成。该项目旨在通过开拓新型高保真、基于物理的数值方法和开源、高性能计算软件基础设施的开发来解决这一缺陷,用于极端水动力事件和沿海结构之间的流固耦合模拟。这项研究促进了沿海气候适应力领域的知识进步。它符合 NSF 致力于促进科学进步、促进气候变化和抵御能力突破的承诺。所开发的计算工具的广泛传播有可能通过设计更具气候适应性的沿海基础设施来带来社会和经济效益。此外,它有可能影响涉及流固相互作用的多个科学领域。这项研究纳入了多项教育和外展活动,包括对高中教师进行气候适应问题培训、让不同的学生群体参与项目以及改进课程。这些活动提高了人们对气候变化的认识,培养跨学科和计算思维,并促进多样性和包容性。该项目的技术目标是开发高保真、基于物理的计算工具,用于极端水动力事件下的沿海流体-结构相互作用。这些工具推进了沿海气候恢复力的数学方法、算法和计算软件。具体来说,该项目引入了以下网络基础设施创新。首先,它采用平滑粒子流体动力学来模拟剧烈的自由表面流动和极端结构变形,包括破碎。这种方法不同于以前的沿海流体-结构相互作用的数值方法,这些方法通常依赖于基于网格的技术或刚体假设来表示固体结构。此外,它采用了一种新颖的压力投影方法,有助于流体和结构域的高效、准确的双向耦合,从而实现高预测精度。该研究还深入研究了结构损伤和断裂建模的先进数值方法。其中包括相场、近场动力学和微平面模型,从而提供了用于模拟结构故障的高级数值功能。除了这些计算开发之外,该项目还使用水槽设施为开发的计算工具提供实验验证。最后,这些计算和数学创新的巅峰,与针对土木结构定制的复杂预处理模块相结合,开发出一个 GPU 加速的软件平台,通过基于云的开源存储库提供给研究界。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Georgios Moutsanidis其他文献

Georgios Moutsanidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

精子发生中mRNA下游开放阅读框(downstream Open Reading Frame,dORF)的功能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
飞行器旋转翼打开过程扰动稳定性机理研究
  • 批准号:
    U2141249
  • 批准年份:
    2021
  • 资助金额:
    260 万元
  • 项目类别:
    联合基金项目
日本北海道奥尻岛新生代火山作用:对日本海打开深部过程的制约
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
人才政策驱使下的高层次知识员工引进与企业双向开放式创新:打开“开放性”悖论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
打开经济运行的黑箱:生态经济学“经济解构模型”的构建及其实践
  • 批准号:
    71973008
  • 批准年份:
    2019
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
  • 批准号:
    10725500
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
Combining sources of information to improve HIV pre-exposure prophylaxis
结合信息来源改善艾滋病毒暴露前预防
  • 批准号:
    10700193
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
Brain metabolism across the lifespan using multi-parametric MRS
使用多参数 MRS 分析整个生命周期的脑代谢
  • 批准号:
    10738647
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
Fine-mapping causal tissues at disease-associated loci to infer disease subtypes
精细绘制疾病相关位点的致病组织以推断疾病亚型
  • 批准号:
    10600499
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
Building Rural Aspirations In Neuroscience with Science, Technology, Engineering, and Mathematics (BRAIN-STEM)
用科学、技术、工程和数学构建神经科学领域的农村愿望 (BRAIN-STEM)
  • 批准号:
    10665287
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了