CAREER: Biomechanical Characterization of Periventricular White Matter and its Age-related Degeneration
职业:脑室周围白质的生物力学特征及其与年龄相关的变性
基本信息
- 批准号:2337739
- 负责人:
- 金额:$ 57.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-06-01 至 2029-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career development (CAREER) award supports research that will apply experimental and computational strategies to quantify the biomechanical properties of periventricular white matter and its age-related degeneration. Brain aging is characterized by progressive neurodegeneration that inescapably leads to cognitive slowing and functional decline. As such, corresponding cell-level changes manifest on the organ-level as brain shape changes in the form of cortical thinning, white matter shrinking, and – most notably – lateral ventricular enlargement. The research seeks to study how progressive tissue loss drives ventricular enlargement, leads to tissue damage associated with neuroinflammation and axon loss and is clearly visible in medical imaging of the brain. The framework will explain the impact of decade-long brain shape changes on functional brain structures, such as the ventricular wall. This work could lead to potential identification of subjects showing signs of abnormal aging early on. The research will also inform educational activities that aim at educating the public about basic brain aging mechanisms and fostering early interest in science, engineering, and medicine among underrepresented groups in STEM. That includes contributions to the annual Brain Awareness Week as well as research opportunities catered to 10th-graders and undergraduate engineering students. The specific goal of the research is to combine medical image registration, mechanical characterization, and constitutive modeling to fundamentally understand the relationship between organ-level tissue volume loss and periventricular tissue degeneration during aging. Thus, the research objectives of this project include to (i) infer ventricular enlargement from longitudinal image data; (ii) to quantify the evolving properties of periventricular tissues; and (iii) to establish a constitutive brain aging model that predicts ventricular enlargement and corresponding periventricular whiter matter lesion locations. Upon completion of the work, it will become clear (i) how cerebral atrophy drives microstructural degeneration of periventricular white matter tissue and (ii) how the severity of age-related brain shape changes is a reliable predictor for the brain’s overall state of health. Additionally, the tools arising from this work will be an important addition to the soft tissue biomechanics community. The overarching focus will be on using the newly generated knowledge to identify subjects that are at increased risk for early periventricular white matter lesion formation. This project will ultimately allow the PI to advance the emerging field of computational and experimental neuromechanics and establish his long-term career in brain health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)奖支持应用实验和计算策略来量化脑室周围白质的生物力学特性及其与年龄相关的退化的研究,大脑衰老的特点是进行性神经退化,不可避免地导致认知减慢和功能衰退。因此,相应的细胞水平变化会在器官水平上显现出来,即大脑形状发生变化,表现为皮质变薄、白质萎缩,以及最明显的侧脑室扩大。研究渐进性组织损失如何导致脑室扩大,导致与神经炎症和轴突损失相关的组织损伤,并且在大脑的医学成像中清晰可见,该框架将解释长达十年的大脑形状变化对功能性大脑结构的影响,例如。这项工作可能有助于识别早期出现异常衰老迹象的受试者,该研究还将为旨在教育公众基本大脑衰老机制并培养对科学、工程和医学的早期兴趣的教育活动提供信息。在代表性不足的群体中其中包括对年度大脑意识周的贡献以及为十年级学生和工程本科生提供的研究机会,该研究的具体目标是将医学图像配准、机械表征和本构建模结合起来,从根本上理解这种关系。因此,该项目的研究目标包括(i)从纵向图像数据推断脑室扩大;(ii)量化脑室周围组织的演变特性。脑室周围组织;以及(iii)建立预测脑室扩大和相应脑室周围白质病变位置的本构脑老化模型。完成这项工作后,(i)脑萎缩如何驱动脑室周围白质组织的微结构退化将变得清楚。 (ii) 与年龄相关的大脑形状变化的严重程度如何成为大脑整体健康状况的可靠预测因素。此外,这项工作产生的工具将是对大脑整体健康状况的重要补充。软组织生物力学界的首要重点将是利用新产生的知识来识别早期脑室周围白质病变形成风险较高的受试者,该项目最终将使 PI 能够推进新兴的计算和实验神经力学领域的发展。建立他在大脑健康领域的长期职业生涯。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Johannes Weickenmeier其他文献
Insights into the Mechanical Characterization of Mouse Brain Tissue Using Microindentation Testing.
使用显微压痕测试深入了解小鼠脑组织的机械表征。
- DOI:
10.1002/cpz1.1011 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:0
- 作者:
Xuesong Zhang;Eva A. N. van den Hurk;Johannes Weickenmeier - 通讯作者:
Johannes Weickenmeier
Experimental and Numerical Characterization of the Mechanical Masseter Muscle Response During Biting.
咬合过程中机械咬肌反应的实验和数值表征。
- DOI:
10.1115/1.4037592 - 发表时间:
2017-12-01 - 期刊:
- 影响因子:0
- 作者:
Johannes Weickenmeier;Johannes Weickenmeier;M. Jabareen;B.J.D. Le Reverend;Marco Ramaioli;Edoardo Mazza;Edoardo Mazza - 通讯作者:
Edoardo Mazza
Brain Stiffness Follows Cuprizone-Induced Variations in Local Myelin Content.
脑僵硬是由铜宗引起的局部髓磷脂含量变化引起的。
- DOI:
10.1016/j.actbio.2023.08.033 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:9.7
- 作者:
Xuesong Zhang;Johannes Weickenmeier - 通讯作者:
Johannes Weickenmeier
Tri-layer wrinkling as a mechanism for anchoring center initiation in the developing cerebellum
- DOI:
10.1039/c6sm00526h - 发表时间:
2016-05 - 期刊:
- 影响因子:3.4
- 作者:
Emma Lejeune;Ali Javili;Johannes Weickenmeier;Ellen Kuhl;Christian Linder - 通讯作者:
Christian Linder
Elastic–viscoplastic modeling of soft biological tissues using a mixed finite element formulation based on the relative deformation gradient
使用基于相对变形梯度的混合有限元公式对生物软组织进行弹粘塑性建模
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2.1
- 作者:
Johannes Weickenmeier;M. Jabareen - 通讯作者:
M. Jabareen
Johannes Weickenmeier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
上肢神经康复机器人的运动模式参数化表征方法与人机协同机制的研究
- 批准号:51865056
- 批准年份:2018
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
下尿路梗阻与膀胱癌复发相关性的生物力学研究
- 批准号:11872146
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
沙样散粒体介质中动物运动的仿生生物力学研究
- 批准号:11772038
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
一个支持多维度生物力学与生物化学表征的自动化微型流式细胞仪的开发和对于癌细胞分选的应用
- 批准号:31500758
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水凝胶材料表界面粘弹、流变性质的原位表征
- 批准号:21574110
- 批准年份:2015
- 资助金额:68.0 万元
- 项目类别:面上项目
相似海外基金
ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
- 批准号:
2347575 - 财政年份:2024
- 资助金额:
$ 57.06万 - 项目类别:
Standard Grant
Development of ultrasound-based integrated techniques for biomechanical and bioacoustical characterization of tissue
开发基于超声的组织生物力学和生物声学表征集成技术
- 批准号:
RGPIN-2016-06472 - 财政年份:2022
- 资助金额:
$ 57.06万 - 项目类别:
Discovery Grants Program - Individual
Intravascular microstructural, chemical and biomechanical characterization of coronary plaques
冠状动脉斑块的血管内微观结构、化学和生物力学特征
- 批准号:
10669254 - 财政年份:2022
- 资助金额:
$ 57.06万 - 项目类别:
Development of ultrasound-based integrated techniques for biomechanical and bioacoustical characterization of tissue
开发基于超声的组织生物力学和生物声学表征集成技术
- 批准号:
RGPIN-2016-06472 - 财政年份:2022
- 资助金额:
$ 57.06万 - 项目类别:
Discovery Grants Program - Individual
Development of ultrasound-based integrated techniques for biomechanical and bioacoustical characterization of tissue
开发基于超声的组织生物力学和生物声学表征集成技术
- 批准号:
RGPIN-2016-06472 - 财政年份:2021
- 资助金额:
$ 57.06万 - 项目类别:
Discovery Grants Program - Individual