Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
基本信息
- 批准号:2335905
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-15 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical and computational studies of materials and systems in which their constituents (electrons, atoms, and ions) interact strongly with each other and, as a result, exhibit novel quantum behavior. The main research focus is on advancing fundamental understanding of unusual properties and phenomena which may lead to the development of future technologies. The PIs will employ advanced analytical methods and computational algorithms that they have developed to achieve accurate description of several key condensed matter systems at low temperature when collective quantum behavior of atoms and electrons results in the superconducting and superfluid states. Superconductivity and superfluidity are phenomena characterized by zero resistance and zero viscosity to the electron and fluid flows, respectively. These are related states of matter distinguished by the charge of the particles participating in the flow: in superconductors the flow is associated with charged electron pairs, while in superfluids it is due to the flow of neutral atoms such as, for example, Helium-4. In this project, various mechanisms responsible for superconductivity in prototypical systems and superfluidity in Helium-4 will be investigated. This project also supports training graduate students in advanced numerical techniques, quantum statistics, topical problems of condensed-matter and atomic physics, and high-performance computing. This project also helps to advance the Precision Many Body Physics Initiative which is aimed to facilitate international collaboration in cutting edge research directed toward understanding collective properties of matter, including quantum matter. Activities planned within this context include international workshops, Focused Sessions at American Physical Society March Meetings, and topical mini workshops.TECHNICAL SUMMARY This award supports theoretical and computational research with an aim to achieve a fundamental understanding of electronic and transport properties of a variety of condensed matter systems through the use of two state-of-the-art approaches to correlated quantum many-body systems: Worm Algorithm (WA) and Diagrammatic Monte Carlo (DiagMC); both introduced by the research team.The main goals of the project are: (i) WA-based studies of a new class of pseudo-one-dimensional superfluid systems called "transverse quantum fluids"; (ii) DiagMC studies of Cooper instability in the prototypical model of correlated electrons, uniform electron gas (with and without coupling to the phonon subsystem); and (iii) DiagMC studies of novel polaron and bipolaron states.This project also supports training graduate students in advanced numerical techniques, quantum statistics, topical problems of condensed-matter and atomic physics, and high-performance computing. This project also helps to advance the Precision Many Body Physics Initiative which is aimed to facilitate international collaboration in cutting edge research directed toward understanding collective properties of matter, including quantum matter. Activities planned within this context include international workshops, Focused Sessions at American Physical Society March Meetings, and topical mini workshops.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项支持材料和系统的理论和计算研究,其中它们的成分(电子、原子和离子)彼此强烈相互作用,从而表现出新颖的量子行为。主要研究重点是促进对不寻常性质和现象的基本理解,这可能会导致未来技术的发展。 PI 将采用他们开发的先进分析方法和计算算法,以在原子和电子的集体量子行为导致超导和超流体状态时实现对低温下几个关键凝聚态物质系统的准确描述。超导性和超流动性是分别以电子流和流体流的零阻力和零粘度为特征的现象。这些是物质的相关状态,通过参与流动的粒子的电荷来区分:在超导体中,流动与带电电子对相关,而在超流体中,流动是由于中性原子的流动,例如 Hel-4 。在这个项目中,将研究原型系统中超导性和 Hel-4 中超流动性的各种机制。 该项目还支持对研究生进行高级数值技术、量子统计、凝聚态和原子物理热点问题以及高性能计算方面的培训。该项目还有助于推进精密多体物理计划,该计划旨在促进尖端研究的国际合作,旨在了解物质的集体属性,包括量子物质。在此背景下计划的活动包括国际研讨会、美国物理学会三月会议的重点会议以及专题迷你研讨会。技术摘要该奖项支持理论和计算研究,旨在对各种凝聚的电子和传输特性有一个基本的了解通过使用两种最先进的相关量子多体系统方法来研究物质系统:蠕虫算法(WA)和图解蒙特卡罗(DiagMC);该项目的主要目标是:(i)基于WA的一类新型伪一维超流体系统(称为“横向量子流体”)的研究; (ii) DiagMC 研究相关电子、均匀电子气(有或没有耦合到声子子系统)的原型模型中的库珀不稳定性; (iii) 新的极化子和双极化子态的 DiagMC 研究。该项目还支持在高级数值技术、量子统计、凝聚态和原子物理的主题问题以及高性能计算方面培训研究生。该项目还有助于推进精密多体物理计划,该计划旨在促进尖端研究的国际合作,旨在了解物质的集体属性,包括量子物质。在此背景下计划的活动包括国际研讨会、美国物理学会三月会议的重点会议以及专题迷你研讨会。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anatoly Kuklov其他文献
Anatoly Kuklov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anatoly Kuklov', 18)}}的其他基金
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
- 批准号:
2032136 - 财政年份:2020
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for strongly correlated condensed matter systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
- 批准号:
1720251 - 财政年份:2017
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo in Atomic and Condensed Matter Physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
- 批准号:
1314469 - 财政年份:2013
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
International Workshop Supersolids 2011
2011 年超固体国际研讨会
- 批准号:
1063344 - 财政年份:2011
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo in Atomic and Condensed Matter Physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
- 批准号:
1005527 - 财政年份:2010
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Collaborative Research: Worm algorithm and Diagrammatic Monte Carlo in atomic and condensed matter physics
合作研究:原子和凝聚态物理中的蠕虫算法和图解蒙特卡罗
- 批准号:
0653135 - 财政年份:2007
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: ITR-(ASE)-(sim) : Worm algorithm and diagrammatic Monte Carlo for strongly correlated atomic and condensed matter systems
合作研究:ITR-(ASE)-(sim):用于强相关原子和凝聚态物质系统的蠕虫算法和图解蒙特卡罗
- 批准号:
0426814 - 财政年份:2004
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
相似国自然基金
复杂介质中pH刺激响应型蠕虫状胶束体系构建及其机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于蠕虫状聚合物纳米纤维的肿瘤疫苗高效级联递送系统研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
中国蠕虫病重要研究方向研讨会
- 批准号:31972699
- 批准年份:2019
- 资助金额:13.2 万元
- 项目类别:国际(地区)合作与交流项目
旋毛虫免疫抑制分子——丝氨酸蛋白酶TspE1的酶学特性鉴定及其分子作用机制研究
- 批准号:31902290
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
面向高级持续性威胁的工业蠕虫隐匿传播理论与溯源研究
- 批准号:61972452
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
- 批准号:
2335904 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
- 批准号:
2218382 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
- 批准号:
2218119 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
- 批准号:
2032077 - 财政年份:2020
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
- 批准号:
2032136 - 财政年份:2020
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant