EAGER: A Comprehensive Approach for Generating, Sharing, Searching, and Using High-Resolution Terrain Parameters
EAGER:生成、共享、搜索和使用高分辨率地形参数的综合方法
基本信息
- 批准号:2334945
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Terrain parameters quantitatively describe a landscape's surface properties (for example, slope or topographic wetness). Terrain parameters hold significant potential for advancing climate-related science and engineering efforts. As terrain parameters can be generated at different spatial resolutions, they are valuable resources for scientists working on soil moisture prediction, fire propagation, estimation of soil carbon content, soil respiration, and hydrology. These applications are critical for understanding land-atmosphere interactions and mitigating the impacts of climate change across ecosystems and landscapes. However, the process of deriving terrain parameters from digital elevation models is accurate, but expensive in terms of computational resources and time. For more efficient generation of terrain parameters, this project implements a flexible workflow to generate terrain parameter datasets at different resolutions for different regions of interest. All the products of this project (data, metadata, and software) are stored in an open-access commons to ensure they are Findable, Accessible, Interoperable, and Reusable (FAIR). The team of researchers promotes increased participation of underrepresented students, particularly women, through mentoring students in Systers (the organization for women in Electrical Engineering and Computer Science at the University of Tennessee Knoxville) and the collaboration with the Women in Data Science (WiDS) at Stanford.Terrain parameters are derived from Digital Elevation Models. High-resolution terrain parameters enable accurate spatial analyses and decision-making in climate-related science and engineering domains, but generating high-resolution data is computationally expensive, hindering the usability of terrain parameters for multiple applications. The project addresses this challenge to make terrain parameters available for climate study in three ways. First, the project implements a workflow to generate 15 terrain parameters at any resolution (from 30 km to 3 m) while preserving performance and accuracy. Performance is evaluated by measuring wall times and memory usage cloud platforms. The accuracy is validated by comparing the data with the derived terrain parameters. Second, the project uses the workflow and exploits data parallelism to generate large high-resolution datasets (i.e., down to 3 m) for North America (i.e., Canada, the United States, and Mexico). The project deliverable comprises rich metadata annotating the parameter values and Jupyter Notebooks for data search and access, reproducible data generation, accuracy validation, and performance measurement. Third, by bringing together an interdisciplinary research team of leading scientists with experience in data science and soil moisture dynamics, the project facilitates collaboration among federal agencies (including NSF, NASA, and USDA, among others) and institutions to pursue interdisciplinary research, share insights, and deliver innovative solutions for climate-related issues.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地形参数定量描述景观的表面特性(例如坡度或地形湿度)。地形参数对于推进气候相关科学和工程工作具有巨大潜力。由于地形参数可以在不同的空间分辨率下生成,因此对于从事土壤湿度预测、火灾蔓延、土壤碳含量估计、土壤呼吸和水文学工作的科学家来说,它们是宝贵的资源。这些应用对于了解陆地与大气的相互作用以及减轻气候变化对生态系统和景观的影响至关重要。然而,从数字高程模型导出地形参数的过程是准确的,但在计算资源和时间方面是昂贵的。为了更高效地生成地形参数,该项目实现了灵活的工作流程,为不同感兴趣区域生成不同分辨率的地形参数数据集。该项目的所有产品(数据、元数据和软件)都存储在开放访问的公共资源中,以确保它们可查找、可访问、可互操作和可重用(公平)。研究人员团队通过指导 Systers(田纳西大学诺克斯维尔大学电气工程和计算机科学领域的女性组织)的学生以及与数据科学女性 (WiDS) 的合作,促进代表性不足的学生(尤其是女性)的参与。斯坦福地形参数源自数字高程模型。高分辨率地形参数可以在气候相关的科学和工程领域实现精确的空间分析和决策,但生成高分辨率数据的计算成本很高,阻碍了地形参数在多种应用中的可用性。该项目通过三种方式解决这一挑战,使地形参数可用于气候研究。首先,该项目实施了一个工作流程,可以在任何分辨率(从 30 km 到 3 m)下生成 15 个地形参数,同时保持性能和准确性。通过测量云平台的挂起时间和内存使用情况来评估性能。通过将数据与导出的地形参数进行比较来验证准确性。其次,该项目使用工作流程并利用数据并行性为北美(即加拿大、美国和墨西哥)生成大型高分辨率数据集(即低至 3 m)。该项目可交付成果包括注释参数值的丰富元数据以及用于数据搜索和访问、可重复数据生成、准确性验证和性能测量的 Jupyter Notebook。第三,通过汇集具有数据科学和土壤湿度动力学经验的领先科学家的跨学科研究团队,该项目促进了联邦机构(包括 NSF、NASA 和 USDA 等)和机构之间的合作,以开展跨学科研究、分享见解,并为气候相关问题提供创新解决方案。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michela Taufer其他文献
Scalable Incremental Checkpointing using GPU-Accelerated De-Duplication
- DOI:
10.1145/3605573.3605639 - 发表时间:
2023-08-07 - 期刊:
- 影响因子:0
- 作者:
Nigel Tan;Jakob Luettgau;Jack Marquez;K. Teranishi;Nicolas Morales;Sanjukta Bhowmick;Franck Cappello;Michela Taufer;Bogdan Nicolae - 通讯作者:
Bogdan Nicolae
Integrating FAIR Digital Objects (FDOs) into the National Science Data Fabric (NSDF) to Revolutionize Dataflows for Scientific Discovery
将 FAIR 数字对象 (FDO) 集成到国家科学数据结构 (NSDF) 中,彻底改变科学发现的数据流
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Michela Taufer;Heberth Martinez;Jakob Luettgau;Lauren Whitnah;†. GiorgioScorzelli;†. PaniaNewel;Aashish Panta;Timo Bremer;§. DougFils;¶. ChristineR.Kirkpatrick;Nina McCurdy;V. Pascucci;U. Knoxville;†. U.Utah;R. LLNL ‡;Research Center - 通讯作者:
Research Center
Computational multiscale modeling in protein--ligand docking
蛋白质-配体对接的计算多尺度建模
- DOI:
10.1109/memb.2009.931789 - 发表时间:
2009-04-03 - 期刊:
- 影响因子:0
- 作者:
Michela Taufer;R. Armen;Jianhan Chen;Patricia Teller;Charles Brooks - 通讯作者:
Charles Brooks
NSDF-Services: Integrating Networking, Storage, and Computing Services into a Testbed for Democratization of Data Delivery
NSDF 服务:将网络、存储和计算服务集成到数据交付民主化的测试平台中
- DOI:
10.1145/3603166.3632136 - 发表时间:
2023-12-04 - 期刊:
- 影响因子:0
- 作者:
Jakob Luettgau;Heberth Martinez;Paula Olaya;G. Scorzelli;G. Tarcea;Jay F. Lofstead;Christine R. Kirkpatrick;Valerio Pascucci;Michela Taufer - 通讯作者:
Michela Taufer
Special issue of computer communications on information and future communication security
计算机通信信息与未来通信安全专刊
- DOI:
10.1016/j.comcom.2010.10.008 - 发表时间:
2011-03-01 - 期刊:
- 影响因子:0
- 作者:
Jong Hyuk Park;Sheikh Iqbal Ahamed;Willy Susilo;Michela Taufer - 通讯作者:
Michela Taufer
Michela Taufer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michela Taufer', 18)}}的其他基金
Collaborative Research: SHF: Small: Model-driven Design and Optimization of Dataflows for Scientific Applications
协作研究:SHF:小型:科学应用数据流的模型驱动设计和优化
- 批准号:
2331152 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SHF: Small: Methods, Workflows, and Data Commons for Reducing Training Costs in Neural Architecture Search on High-Performance Computing Platforms
SHF:小型:降低高性能计算平台上神经架构搜索训练成本的方法、工作流程和数据共享
- 批准号:
2223704 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Elements: SENSORY: Software Ecosystem for kNowledge diScOveRY - a data-driven framework for soil moisture applications
协作研究:要素:SENSORY:知识发现的软件生态系统 - 土壤湿度应用的数据驱动框架
- 批准号:
2103845 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Elements: SENSORY: Software Ecosystem for kNowledge diScOveRY - a data-driven framework for soil moisture applications
协作研究:要素:SENSORY:知识发现的软件生态系统 - 土壤湿度应用的数据驱动框架
- 批准号:
2103845 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Advancing Reproducibility in Multi-Messenger Astrophysics
合作研究:EAGER:提高多信使天体物理学的可重复性
- 批准号:
2041977 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
- 批准号:
2028923 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: ANACIN-X: Analysis and modeling of Nondeterminism and Associated Costs in eXtreme scale applications
SHF:中:协作研究:ANACIN-X:极端规模应用中的非确定性和相关成本的分析和建模
- 批准号:
1900888 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
BIGDATA: IA: Collaborative Research: In Situ Data Analytics for Next Generation Molecular Dynamics Workflows
BIGDATA:IA:协作研究:下一代分子动力学工作流程的原位数据分析
- 批准号:
1841758 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SHF:Medium:Collaborative Research:A comprehensive methodology to pursue reproducible accuracy in ensemble scientific simulations on multi- and many-core platforms
SHF:中:协作研究:在多核和众核平台上追求集合科学模拟的可重复精度的综合方法
- 批准号:
1841552 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative: EAGER: Exploring and Advancing the State of the Art in Robust Science in Gravitational Wave Physics
合作:EAGER:探索和推进引力波物理学稳健科学的最新技术
- 批准号:
1823372 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
基于点云扫描规划的机电综合管线工程三维重建方法与施工质量智能检测研究
- 批准号:52308311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑路段综合运行效能的智能网联车柔性专用道管控方法
- 批准号:52372312
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向城市交通综合治理的多源交通流模式挖掘及智能模拟评价方法
- 批准号:42371416
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
综合应用多组学方法鉴定大豆-根瘤菌共生固氮中有功能的小肽
- 批准号:32300219
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自复位混合阻尼实现钢框架综合韧性提升的多性态地震响应机理与设计调控方法研究
- 批准号:52378182
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Conference: Advancing AI in Science Education (AASE): A Comprehensive Approach to Equity, Inclusion, and Three-Dimensional Learning
会议:推进科学教育中的人工智能 (AASE):公平、包容和三维学习的综合方法
- 批准号:
2332964 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Comprehensive Approach for Safe, Inclusive, and Responsible Research: An Incubation Project
安全、包容和负责任的研究的综合方法:孵化项目
- 批准号:
2316254 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Developing and Testing an Online Intervention for Decreasing Alcohol and Cannabis Misuse and Increasing Healthy Relationship Skills among Young Adult Couples: A Comprehensive Mixed-Methods Approach
开发和测试减少酒精和大麻滥用并提高年轻成年夫妇健康关系技能的在线干预措施:综合混合方法
- 批准号:
10721594 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
- 批准号:
10575550 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别: