SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
基本信息
- 批准号:2334380
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Integrated circuits (ICs) have found their way to a plethora of applications such as computing, communication and data processing, instrumentation, control, and transportation. The continuing technology scaling over the past decades has provided plentiful miniaturized devices with unprecedented performance and efficiency at the disposal of the designer. However, implementing ICs using modern technologies is not an easy task. The ever-increasing performance and robustness requirements and technology sophistications have rendered design, verification, and manufacturing complex and costly. This has tremendous impact on two fronts: design productivity and quality assurance, which are the targets of this project. First, there is a pressing need to close the widening design productivity gap due to the increasing circuit and system complexities, and shortage of experienced human designers, specifically for knowledge-intensive custom circuit design. Second, it is desirable to provide quality assurance in lieu of a combination of growing process instabilities and variations and demanding robustness requirements for mission critical applications such as automotive electronics, avionics, and biomedicine. This project will develop innovative machine learning technology to close the productivity gap and address the challenge in quality design in today’s ever-complex IC design and manufacturing setting. The algorithms, circuit models, and design tools resulted from this work will be disseminated in broad communities through publications, workshops, talks, and research collaborations. The lead investigator will actively recruit undergraduate students, including students from underrepresented groups, for research participation and training while partnering with various outreach programs. The project will produce excellent materials to be integrated into undergraduate and graduate level curriculum on integrated circuits and computer aided design powered by modern machine learning technology, thereby providing excellent workforce training opportunities in these areas of importance. Engagement with the US high-tech industry and other research organizations will be sought to broaden the impact of this work, and promote potential technology transfer to the practice.The technical approach of this work centers on semi-supervised learning, which allows for simultaneous use of labeled and unlabeled data for the targeted machine learning applications. While showing promise, semi-surprised learning has yet to be systemically explored in the integrated circuits community. To this end, this work will develop a semi-supervised learning framework to address the key challenge brought by lack of expensive labeled data and domain-specific needs of IC design and quality assurance, broadly applicable to data-efficient circuit optimization, failure and anomaly detection, test, and manufacturing data analysis. The focused domain-specific semi-supervised learning is promising in offering a potentially game-changing solution to the intended circuit applications by leveraging large amounts of cheap unlabeled data and reducing the utilization of expensive labeled data to its minimum. Specifically, this work will provide solutions to data-efficient design optimization and quality assurance under two settings: static and adaptive semi-supervised learning. In the former setting, learning is performed over a provided labeled dataset without additional labeled data query. The latter setting opens up the added dimension of adaptive semi-supervised learning with improved quality of learning and further reduced labeled data use.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
集成电路 (IC) 已应用于计算、通信和数据处理、仪器仪表、控制和运输等众多应用领域,过去几十年来技术的持续扩展为大量小型化设备提供了前所未有的性能和效率。然而,使用现代技术实现 IC 并不是一件容易的事,不断提高的性能和稳健性要求以及技术的复杂性使得设计、验证和制造变得复杂且成本高昂。前沿:设计生产力和质量保证,这是该项目的目标。首先,由于电路和系统复杂性不断增加,以及经验丰富的人类设计师(特别是知识设计人员)的短缺,迫切需要缩小设计生产力差距。其次,需要提供质量保证来代替不断增长的工艺不稳定性和变化以及汽车电子、航空电子和生物医学等关键任务应用的严格鲁棒性要求。该项目将开发创新的机器学习。关闭技术这项工作产生的算法、电路模型和设计工具将通过出版物、研讨会、讲座和研究合作在广泛的社区中传播。首席研究员将积极招募本科生,包括来自代表性不足群体的学生,进行研究成果参与和培训,同时与各种推广计划合作,该项目将优秀的材料纳入本科生和研究生水平的集成电路和计算机辅助设计课程中。通过现代机器学习技术,从而在这些重要领域提供优秀的劳动力培训机会。将寻求与美国高科技行业和其他研究组织的合作,扩大这项工作的影响,并促进潜在的技术转移到实践中。这项工作的重点是半监督学习,它允许同时使用标记和未标记的数据来实现目标机器学习应用,虽然显示出希望,但半惊讶学习尚未在集成电路社区中得到系统的探索。这项工作将开发半监督学习该框架旨在解决因缺乏昂贵的标记数据以及 IC 设计和质量保证的特定领域需求而带来的关键挑战,广泛适用于数据高效的电路优化、故障和异常检测、测试以及制造数据分析等重点领域。特定的半监督学习有望通过利用大量廉价的未标记数据并将昂贵的标记数据的利用率降至最低,为预期的电路应用提供潜在的改变游戏规则的解决方案。这项工作将为数据提供解决方案两种设置下的高效设计优化和质量保证:静态和自适应在前一种设置中,学习是在提供的标记数据集上进行的,无需额外的标记数据查询,后者打开了自适应半监督学习的附加维度,提高了学习质量并进一步减少了标记数据的使用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng Li其他文献
Nonlinear coupling in triangular triple-core photonic crystal fibers.
三角形三芯光子晶体光纤中的非线性耦合。
- DOI:
10.1364/oe.18.026828 - 发表时间:
2010-12-20 - 期刊:
- 影响因子:3.8
- 作者:
Peng Li;Jianlin Zhao;Xiaojuan Zhang - 通讯作者:
Xiaojuan Zhang
Study on the Emulsifying Properties of Tilapia Skin Gelatin
罗非鱼皮明胶乳化性能的研究
- DOI:
10.4028/www.scientific.net/amr.690-693.1390 - 发表时间:
2013-05-01 - 期刊:
- 影响因子:0
- 作者:
G. Xia;Xuanri Shen;Zhe Liu;Peng Li;Zhi Qiang Jiu - 通讯作者:
Zhi Qiang Jiu
Biochemical and molecular characterization of a novel high activity creatine amidinohydrolase from Arthrobacter nicotianae strain 02181
烟草节杆菌菌株 02181 新型高活性肌酸脒基水解酶的生化和分子表征
- DOI:
10.1016/j.procbio.2008.12.014 - 发表时间:
2009-04-01 - 期刊:
- 影响因子:4.4
- 作者:
Qiang Zhi;P. Kong;J. Zang;Youhong Cui;Shuhui Li;Peng Li;Weijing Yi;Y. Wang;An Chen;Chuanmin Hu - 通讯作者:
Chuanmin Hu
Crowd Counting via Enhanced Feature Channel Convolutional Neural Network
通过增强型特征通道卷积神经网络进行人群计数
- DOI:
10.1109/ictai.2019.00118 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:0
- 作者:
Yinlong Bian;Jiehong Shen;Xin Xiong;Ying Li;Wei;Peng Li - 通讯作者:
Peng Li
Adtrp regulates thermogenic activity of adipose tissue via mediating the secretion of S100b
Adtrp 通过介导 S100b 的分泌调节脂肪组织的产热活性
- DOI:
10.1007/s00018-022-04441-9 - 发表时间:
2022-07-08 - 期刊:
- 影响因子:8
- 作者:
Peng Li;Runjie Song;Yaqi Du;Huijiao Liu;Xiangdong Li - 通讯作者:
Xiangdong Li
Peng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng Li', 18)}}的其他基金
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
- 批准号:
2310170 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Towards fault-tolerant, reliable, efficient, and economical DC-DC conversion for DC grid (FREE-DC)
面向直流电网实现容错、可靠、高效且经济的 DC-DC 转换 (FREE-DC)
- 批准号:
EP/X031608/1 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Research Grant
CAREER: Compact digital biosensing system enabled by localized acoustic streaming
职业:由局部声流驱动的紧凑型数字生物传感系统
- 批准号:
2144216 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Data-Efficient Uncovering of Rare Design Failures for Reliability-Critical Circuits
合作研究:SHF:中:以数据效率揭示可靠性关键电路的罕见设计故障
- 批准号:
1956313 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
- 批准号:
2000851 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
- 批准号:
1911067 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
FET: Small: Heterogeneous Learning Architectures and Training Algorithms for Hardware Accelerated Deep Spiking Neural Computation
FET:小型:硬件加速深度尖峰神经计算的异构学习架构和训练算法
- 批准号:
1948201 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
E2CDA: Type II: Self-Adaptive Reservoir Computing with Spiking Neurons: Learning Algorithms and Processor Architectures
E2CDA:类型 II:带尖峰神经元的自适应储层计算:学习算法和处理器架构
- 批准号:
1940761 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Enabling Adaptive Voltage Regulation: Control, Machine Learning, and Circuit Design
实现自适应电压调节:控制、机器学习和电路设计
- 批准号:
1810125 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
I-Corps: Enabling Electronic Design using Data Intelligence
I-Corps:使用数据智能实现电子设计
- 批准号:
1740531 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
以半乳凝素-3为靶点探讨金银花多糖组分LJP-A-2抗非小细胞肺癌的构效关系研究
- 批准号:32360231
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于新型半花菁荧光团的小分子近红外II区荧光传感体系构建及癌细胞靶向示踪与光治疗
- 批准号:22367024
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于轨道耦合工程的半极性小面深紫外LED载流子限域研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多并稠环和半靛类高迁移率D/A共轭小分子的设计、合成及场效应性能研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
数据特征驱动下基于半监督学习的小微企业贷款信用风险预测研究
- 批准号:71901140
- 批准年份:2019
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
二次計画問題の狭小な半正定値緩和に基づく多項式最適化の大域的解法の展開
基于二次规划问题的窄正半定松弛的多项式优化全局求解方法的开发
- 批准号:
22KJ1307 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Evaluation of anti-fibrotic and anti-inflammatory semi-synthetic oxysterol, Oxy210, as a therapeutic drug candidate for non-alcoholic steatohepatitis
抗纤维化和抗炎半合成氧甾醇 Oxy210 作为非酒精性脂肪性肝炎候选治疗药物的评价
- 批准号:
10697132 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Evaluation of anti-fibrotic and anti-inflammatory semi-synthetic oxysterol, Oxy210, as a therapeutic drug candidate for non-alcoholic steatohepatitis
抗纤维化和抗炎半合成氧甾醇 Oxy210 作为非酒精性脂肪性肝炎候选治疗药物的评价
- 批准号:
10697132 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
改良Chubanov法の対称錐計画問題への拡張
改进的丘巴诺夫方法扩展到对称锥规划问题
- 批准号:
22KJ0367 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Myc Transcription Factor Inhibitor Design: Integrating Atomic and Mesoscale with Semi-Supervised Generative Deep Learning Models
Myc 转录因子抑制剂设计:将原子和中尺度与半监督生成深度学习模型相结合
- 批准号:
10745272 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别: