RAPID: Artificial Intelligence Curriculum and K-12 Teacher Agency: Barriers and Opportunities

RAPID:人工智能课程和 K-12 教师机构:障碍和机遇

基本信息

项目摘要

AI-powered tools have the potential to transform education, both in formal and informal settings. The immense potential for AI to address challenges in education has created an urgent need to characterize how K-12 education may leverage these powerful tools safely, ethically, and equitably. While the AI in education landscape is changing drastically and rapidly, little is known about K-12 educators' engagement with AI and how newly developed tools and curriculum will be received and integrated into classrooms. K-12 teachers are critical stakeholders whose understanding, opinions, and willingness to engage with AI tools will be important factors in the success of AI in K-12 education. Without fundamentally understanding K-12 teacher opinions and agency related to AI in education, there is risk of making investments in tools, training, and curricula that simply do not meet the needs or address the concerns of the teachers who will implement them. This project addresses this knowledge gap by collecting survey data from a national sample of K-12 teachers to guide the development of AI tools and curriculum. This proposal was received in response to the Dear Colleague Letter (DCL): Rapidly Accelerating Research on Artificial Intelligence in K-12 Education in Formal and Informal Settings (NSF 23-097), and funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.Researchers will develop and refine a survey to be distributed to approximately 1,000 K-12 teachers nationally. The project investigates the overall research question: How do K-12 teachers perceive AI education and its impacts on the workforce? The project leverages an ecological agency model to develop the survey about AI tool and curriculum adoption. The survey will include both quantitative measures and open-response questions and will be refined through cognitive interviews and reviewed by an expert panel to ensure clarity and completeness. Research results will be disseminated in scholarly publications, as well as through venues that will reach educational practitioners and the public at large. The project results will have the potential to directly impact AI curriculum and tool development for K-12 education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能驱动的工具有潜力改变正式和非正式环境中的教育。人工智能在应对教育挑战方面具有巨大潜力,因此迫切需要描述 K-12 教育如何安全、道德和公平地利用这些强大的工具。虽然人工智能在教育领域正在发生巨大而迅速的变化,但人们对 K-12 教育工作者与人工智能的接触以及如何接受新开发的工具和课程并将其融入课堂知之甚少。 K-12 教师是关键的利益相关者,他们对人工智能工具的理解、意见和意愿将是人工智能在 K-12 教育中取得成功的重要因素。如果没有从根本上了解 K-12 教师对人工智能教育的看法和机构,就存在对工具、培训和课程进行投资的风险,而这些工具、培训和课程根本无法满足实施这些工具、培训和课程的教师的需求或解决他们所关心的问题。该项目通过收集全国 K-12 教师样本的调查数据来弥补这一知识差距,以指导人工智能工具和课程的开发。该提案是为了回应《亲爱的同事来信》(DCL):在正式和非正式环境中快速加速 K-12 教育中的人工智能研究 (NSF 23-097),并由学生和教师创新技术体验项目 (NSF 23-097) 资助ITEST)计划,该计划支持建立对实践、计划要素、背景流程的理解的项目,有助于增加学生对科学、技术、工程和数学(STEM)以及信息和通信技术的知识和兴趣(ICT) 职业。研究人员将制定和完善一项调查,分发给全国约 1,000 名 K-12 教师。该项目调查了总体研究问题:K-12 教师如何看待人工智能教育及其对劳动力的影响?该项目利用生态机构模型来开展有关人工智能工具和课程采用的调查。该调查将包括定量测量和开放式回答问题,并将通过认知访谈进行完善,并由专家小组进行审查,以确保清晰度和完整性。研究结果将通过学术出版物以及教育从业者和广大公众的场所传播。该项目的结果将有可能直接影响 K-12 教育的人工智能课程和工具开发。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karin Jensen其他文献

Revolutionizing Robotics
彻底改变机器人技术
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Tran;Elizabeth McNeela;Jason Robinson;Jill McLean;Karin Jensen;Holly Golecki
  • 通讯作者:
    Holly Golecki
Author Correction: Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition
作者更正:通过 MEK 和 SHP2 联合抑制来靶向野生型 KRAS 扩增的胃食管癌
  • DOI:
    10.1038/s41591-018-0168-6
  • 发表时间:
    2018-08-09
  • 期刊:
  • 影响因子:
    82.9
  • 作者:
    G. Wong;Jin Zhou;Jie Bin Liu;Zhong Wu;Xinsen Xu;Tianxia Li;David Xu;S. Schumacher;Jens Puschhof;James McFarl;Charles Zou;A. Dulak;L. Henderson;Peng Xu;Emily O’Day;R. Rendak;W. Liao;F. Cecchi;T. Hembrough;Sarit Schwartz;C. Szeto;A. Rustgi;Kwok;J. Diehl;Karin Jensen;F. Graziano;A. Ruzzo;Shaunt Fereshetian;Philipp Mertins;Steve Carr;R. Beroukhim;Kenichi Nakamura;E. Oki;Masayuki Watanabe;H. Baba;Y. Imamura;D. Catenacci;A. Bass
  • 通讯作者:
    A. Bass
Determinants of Intra-major Specialization and Career Decisions Among Undergraduate Biomedical Engineering Students
生物医学工程本科生专业内专业化和职业决策的决定因素
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Isabel M. Miller;Grisel Lopez‐Alvarez;M. T. Cardador;Karin Jensen
  • 通讯作者:
    Karin Jensen
Author Correction: Mutations in the SWI/SNF complex induce a targetable dependence on oxidative phosphorylation in lung cancer
作者更正:SWI/SNF 复合体的突变诱导肺癌对氧化磷酸化的靶向依赖性
  • DOI:
    10.1038/s41591-018-0173-9
  • 发表时间:
    2018-08-13
  • 期刊:
  • 影响因子:
    82.9
  • 作者:
    Gabrielle S. Wong;S. Schumacher;Jens Puschhof;James McFarl;Charles Zou;Austin Dulak;Les Henderson;Peng Xu;Emily O’Day;R. Rendak;W. Liao;F. Cecchi;T. Hembrough;Sarit Schwartz;Christopher Szeto;Anil K Rustgi;Karin Jensen;Francesco Graziano;Shaunt Fereshetian;Philipp Mertins;R. Beroukhim;Kenichi Nakamura;Eiji Oki;Masayuki Watanabe;Hideo Baba;Y. Imamura;S. Rangarajan;Dae Won Park;Saranya Ravi;J. Deshane;Edward Abraham
  • 通讯作者:
    Edward Abraham
The IT-BME Project: Integrating Inclusive Teaching in Biomedical Engineering Through Faculty/Graduate Partnerships
IT-BME 项目:通过教师/研究生合作整合生物医学工程的包容性教学
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patricia Jaimes;Elizabeth Bottorff;Theo Hopper;Javiera Jilberto;Jessica King;Monica Wall;Maria Coronel;Karin Jensen;Elizabeth Mays;Aaron Morris;James Weiland;Melissa Wrobel;David Nordsletten;Tershia A. Pinder
  • 通讯作者:
    Tershia A. Pinder

Karin Jensen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karin Jensen', 18)}}的其他基金

EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Research: An exploration of how faculty mentoring influences doctoral student psychological safety and the impact on work-related outcomes
合作研究:研究:探索教师指导如何影响博士生心理安全以及对工作相关成果的影响
  • 批准号:
    2224422
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Research: An exploration of how faculty mentoring influences doctoral student psychological safety and the impact on work-related outcomes
合作研究:研究:探索教师指导如何影响博士生心理安全以及对工作相关成果的影响
  • 批准号:
    2316547
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
CAREER: Supporting Undergraduate Mental Health by Building a Culture of Wellness in Engineering
职业:通过构建工程健康文化支持本科生心理健康
  • 批准号:
    2315912
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
EAGER Collaborative Proposal: Building a Community of Mentors in Engineering Education Research Through Peer Review Training
EAGER 协作提案:通过同行评审培训建立工程教育研究导师社区
  • 批准号:
    2318586
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
EAGER Collaborative Proposal: Developing Engineering Faculty as Engineering Education Researchers Through Mentorship
EAGER 合作提案:通过指导将工程教师发展为工程教育研究人员
  • 批准号:
    2318849
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Workshop proposal: Building Foundations for Engineering Faculty in Engineering Education Research
合作研究:研讨会提案:为工程教育研究中的工程教师奠定基础
  • 批准号:
    2029410
  • 财政年份:
    2020
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
EAGER Collaborative Proposal: Building a Community of Mentors in Engineering Education Research Through Peer Review Training
EAGER 协作提案:通过同行评审培训建立工程教育研究导师社区
  • 批准号:
    2037788
  • 财政年份:
    2020
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
CAREER: Supporting Undergraduate Mental Health by Building a Culture of Wellness in Engineering
职业:通过构建工程健康文化支持本科生心理健康
  • 批准号:
    1943541
  • 财政年份:
    2020
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
EAGER Collaborative Proposal: Developing Engineering Faculty as Engineering Education Researchers Through Mentorship
EAGER 合作提案:通过指导将工程教师发展为工程教育研究人员
  • 批准号:
    1914735
  • 财政年份:
    2019
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant

相似国自然基金

基于YE1-BE3-FNLS编辑人造血干细胞的研究
  • 批准号:
    32371549
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
可级联催化和运动变形的人造细胞构建及其在硼中子俘获治疗肿瘤中的研究
  • 批准号:
    82373206
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
光控NO人造细胞的构建及其对黑色素瘤的治疗研究
  • 批准号:
    22374033
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于阻燃三维集流体/人造保护层的热稳定钠(钾)金属负极设计构筑及其调控枝晶生长动力学研究
  • 批准号:
    52302085
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人造血干细胞的发育异质性解析及体外再生策略
  • 批准号:
    82330006
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目

相似海外基金

Development of multimode vacuum ionization for use in medical diagnostics
开发用于医疗诊断的多模式真空电离
  • 批准号:
    10697560
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
  • 批准号:
    10584324
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
Testing a Memory-Based Hypothesis for Anhedonia
测试基于记忆的快感缺失假设
  • 批准号:
    10598974
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
BRAIN CONNECTS: Rapid and Cost‐effective Connectomics with Intelligent Image Acquisition, Reconstruction, and Querying
大脑连接:具有智能图像采集、重建和查询功能的快速且经济有效的连接组学
  • 批准号:
    10663654
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
Functional Magnetic Resonance Imaging and Deep Learning to Improve Deep Brain Stimulation Therapy
功能磁共振成像和深度学习改善脑深部刺激疗法
  • 批准号:
    10717563
  • 财政年份:
    2023
  • 资助金额:
    $ 19.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了