Collaborative Research: SLES: Foundations of Qualitative and Quantitative Safety Assessment of Learning-enabled Systems

合作研究:SLES:学习型系统定性和定量安全评估的基础

基本信息

  • 批准号:
    2331938
  • 负责人:
  • 金额:
    $ 27.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-12-01 至 2026-11-30
  • 项目状态:
    未结题

项目摘要

Learning-enabled autonomous systems operating in unfamiliar or unprecedented environments pose new foundational challenges for their safety assessment and subsequent risk management. In this context, the system-level safety means the complicated behaviors created by the interactions between multiple learning components and the physical world satisfy the safety requirements, protecting the system from accidental failures to avoid hazards such as collisions to other vehicles, bicycles and pedestrians. The qualitative and quantitative methodologies envisioned to complement each other by providing both 'yes' or 'no' binary decisions and numerical measures of safety, which allow for a thorough understanding of safety concerns and enable effective safety verification in uncertain environments. This project targets the foundational challenges of developing qualitative and quantitative safety assessment methods capable of capturing uncertainties from environments and providing timely, comprehensive, and accurate safety evaluations at the system level. The outcomes are expected to boost the trustworthiness and adaptability of learning-enabled systems to the unknown world and facilitate their safe integration into various domains, such as autonomous vehicles, robotics, or industrial automation. Educational and outreach activities are well-integrated into the research, including curriculum development, K-12 STEM outreach, and industrial engagement activities. The designed activities are uniquely positioned to promote diversity throughout this project by giving priority consideration, mentoring, and working with students in underrepresented minority groups. The proposed research efforts will be directed toward building the foundations of end-to-end qualitative and quantitative safety assessment of learning-enabled autonomous systems. This project will develop the probabilistic star temporal logic specification language. The new specification language offers a formalism for expressive modeling of learning process uncertainty and complex temporal behaviors, and supports both qualitative and quantitative reasoning. Efficient computation methods and tools will be developed to verify probabilistic star temporal logic specifications for learning-enabled deep neural network components. The verification methods and tools are centered on enhancing their scalability and resource efficiency. This project will develop system-level qualitative and quantitative safety assessment methods and tools that can handle the interplay of various learning-enabled components in a system under different availability of environment information. Learning-enabled F1Tenth testbed, a small-scale system of real autonomous vehicles and its simulator, will be used to create multiple real-world autonomous driving scenarios to validate and evaluate the applicability, scalability and reliability of the proposed methods and tools.This research is supported by a partnership between the National Science Foundation and Open Philanthropy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在陌生或前所未有的环境中运行的学习型自主系统对其安全评估和后续风险管理提出了新的基础挑战。在此背景下,系统级安全意味着多个学习组件与物理世界之间交互产生的复杂行为满足安全要求,保护系统免受意外故障的影响,避免与其他车辆、自行车和行人发生碰撞等危险。定性和定量方法预计通过提供“是”或“否”二元决策和安全数字测量来相互补充,从而可以全面了解安全问题并在不确定的环境中实现有效的安全验证。该项目针对开发定性和定量安全评估方法的基本挑战,该方法能够捕获环境中的不确定性,并在系统层面提供及时、全面和准确的安全评估。研究结果预计将提高学习型系统对未知世界的可信度和适应性,并促进其安全集成到自动驾驶汽车、机器人或工业自动化等各个领域。教育和推广活动很好地融入了研究,包括课程开发、K-12 STEM 推广和行业参与活动。设计的活动具有独特的定位,通过优先考虑、指导和与代表性不足的少数群体的学生合作,促进整个项目的多样性。拟议的研究工作将旨在为学习型自主系统的端到端定性和定量安全评估奠定基础。该项目将开发概率星时序逻辑规范语言。新的规范语言为学习过程不确定性和复杂时间行为的表达建模提供了形式主义,并支持定性和定量推理。将开发高效的计算方法和工具来验证支持学习的深度神经网络组件的概率星时序逻辑规范。验证方法和工具的重点是增强其可扩展性和资源效率。该项目将开发系统级定性和定量安全评估方法和工具,这些方法和工具可以在不同的环境信息可用性下处理系统中各种支持学习的组​​件的相互作用。具有学习功能的 F1Tenth 测试平台是一个由真实自动驾驶车辆及其模拟器组成的小型系统,将用于创建多个真实世界的自动驾驶场景,以验证和评估所提出的方法和工具的适用性、可扩展性和可靠性。该奖项得到了美国国家科学基金会和开放慈善事业之间的合作支持。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Maximum output discrepancy computation for convolutional neural network compression
卷积神经网络压缩的最大输出差异计算
  • DOI:
    10.1016/j.ins.2024.120367
  • 发表时间:
    2024-04
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Mo, Zihao;Xiang, Weiming
  • 通讯作者:
    Xiang, Weiming
Computationally efficient neural hybrid automaton framework for learning complex dynamics
用于学习复杂动力学的计算高效的神经混合自动机框架
  • DOI:
    10.1016/j.neucom.2023.126879
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Wang, Tao;Yang, Yejiang;Xiang, Weiming
  • 通讯作者:
    Xiang, Weiming
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weiming Xiang其他文献

Observer Design for a Class of switched nonlinear Systems
一类切换非线性系统的观测器设计
  • DOI:
    10.2316/journal.201.2008.4.201-1920
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Xiang;Weiming Xiang
  • 通讯作者:
    Weiming Xiang
Real-Time Verification for Distributed Cyber-Physical Systems
分布式信息物理系统的实时验证
Reachability Analysis for High-Index Linear Differential Algebraic Equations
高指数线性微分代数方程的可达性分析
Accelerating Safety Verification of Neural Network Dynamical Systems Using Assured Compressed Models
使用有保证的压缩模型加速神经网络动态系统的安全验证
Finite time H∞ filtering for uncertain discrete-time switching systems
不确定离散时间切换系统的有限时间 H 滤波

Weiming Xiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weiming Xiang', 18)}}的其他基金

CAREER: Enabling Trustworthy Upgrades of Machine-Learning Intensive Cyber-Physical Systems
职业:实现机器学习密集型网络物理系统的可信升级
  • 批准号:
    2143351
  • 财政年份:
    2022
  • 资助金额:
    $ 27.09万
  • 项目类别:
    Continuing Grant
CPS: Small: Data-Driven Modeling and Control of Human-Cyber-Physical Systems with Extended-Reality-Assisted Interfaces
CPS:小型:具有扩展现实辅助接口的人类网络物理系统的数据驱动建模和控制
  • 批准号:
    2223035
  • 财政年份:
    2022
  • 资助金额:
    $ 27.09万
  • 项目类别:
    Standard Grant

相似国自然基金

脂质合成调控细胞膜稳态介导贝莱斯芽孢杆菌耐受乙醇胁迫机制研究
  • 批准号:
    32372284
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
哈茨木霉正向突变株协同贝莱斯芽孢杆菌SQR9发挥植物促生与生防功能的机制研究
  • 批准号:
    32302679
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
mtrB基因调控色氨酸合成介导贝莱斯芽孢杆菌耐受乙醇胁迫的机制研究
  • 批准号:
    32302023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
贝莱斯芽孢杆菌VII型分泌系统分泌蛋白YukE介导的根系铁泄漏促进其根际定殖的机制研究
  • 批准号:
    32370135
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
贝莱斯芽胞杆菌调控根际菌根真菌Sebacina vermifera协同促进金线莲生长的机制研究
  • 批准号:
    32270296
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SLES: Guaranteed Tubes for Safe Learning across Autonomy Architectures
合作研究:SLES:跨自治架构安全学习的保证管
  • 批准号:
    2331879
  • 财政年份:
    2024
  • 资助金额:
    $ 27.09万
  • 项目类别:
    Standard Grant
Collaborative Research: SLES: Guaranteed Tubes for Safe Learning across Autonomy Architectures
合作研究:SLES:跨自治架构安全学习的保证管
  • 批准号:
    2331878
  • 财政年份:
    2024
  • 资助金额:
    $ 27.09万
  • 项目类别:
    Standard Grant
Collaborative Research: SLES: Bridging offline design and online adaptation in safe learning-enabled systems
协作研究:SLES:在安全的学习系统中桥接离线设计和在线适应
  • 批准号:
    2331880
  • 财政年份:
    2023
  • 资助金额:
    $ 27.09万
  • 项目类别:
    Standard Grant
Collaborative Research: SLES: Safety under Distributional Shift in Learning-Enabled Power Systems
合作研究:SLES:学习型电力系统分配转变下的安全性
  • 批准号:
    2331776
  • 财政年份:
    2023
  • 资助金额:
    $ 27.09万
  • 项目类别:
    Standard Grant
Collaborative Research: SLES: Safe Distributional-Reinforcement Learning-Enabled Systems: Theories, Algorithms, and Experiments
协作研究:SLES:安全的分布式强化学习系统:理论、算法和实验
  • 批准号:
    2331782
  • 财政年份:
    2023
  • 资助金额:
    $ 27.09万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了