Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
基本信息
- 批准号:2328830
- 负责人:
- 金额:$ 37.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical Description:Modern life has been transformed by electronics based on moving electrons through nanoscale semiconductor devices. Spintronics combine electronics with spin, an intrinsic property of elementary particles, making possible even smaller devices that operate at higher speeds and consume less energy. Spintronics could thus revolutionize electronics for data processing, communication, and storage. This project spans design and synthesis of novel materials to fabrication and characterization of advanced spintronic devices. The team will synthesize custom-designed semiconducting alloys to read data more efficiently in a spintronic logic circuit. A fundamental understanding of the structural-performance relationship for spintronic materials will be gained through characterization of structure and materials properties. Collectively, the outcome of this project is expected to be information on how to manufacture a highly efficient spintronic device. The team’s workforce development plan has a central theme of technology communication. The approach seeks to educate and develop faculty, students, and the future workforce to be leaders in the semiconductor industry. Undergraduate and graduate students from five institutions will be trained to better communicate and identify transferable skills to make themselves marketable to semiconductor industry employers. This training will serve as a blueprint for the launch of a micro-credential in technology communication with integrated Industry-Recognized Credentials, and this project will support 75 students to receive this credential. Outreach events will target both undergraduate and K-12 audiences to raise awareness of jobs in the semiconductor industry. These activities will be reinforced by workforce development activities and industry partnerships. Technical Description:Spin gapless semiconductors (SGS) are a new class of spintronic materials that have a finite bandgap in their electronic band structure for electrons with one spin and a zero bandgap for electrons with the other spin, which is advantageous for spintronic applications. Current SGS compounds often display atomic defects and disordering, crucial elements for the material's spin polarization and injection capabilities. In order to harness the unique advantage of SGS as efficient spin injectors, which is indispensable for spin logic devices such as the magneto-electric spin-orbit (MESO) logic, the team is using Mn2CoAl as a platform to develop a strategy that stabilizes the near-SGS behavior through understanding and manipulation of influences from composition, processing, and interfaces. This is a collaborative material-process-device co-design project. At the materials level, the team is determining the relationship between chemical composition, phases, atomic ordering, and resultant electric and magnetic transport properties. On the thin film synthesis level, the team is performing low-energetic, epitaxial-quality film growth with sputter beam epitaxy. Lessons learned from the fundamental materials research will be used to avoid deleterious defects via composition and processing control. At the device level, the team is nanopatterning thin SGS layers into local spin injection junctions for the spin-to-charge readout side of the MESO device. Overall, this research will not only develop a strategy to use SGS materials for spintronic devices but also deepen current understanding on how materials composition, processing, and interfaces collectively impact the performance of a spin injector.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:基于通过纳米级半导体器件移动电子的电子学已经改变了现代生活,该电子学将电子学与自旋(基本粒子的固有属性)相结合,使得更小的设备能够以更高的速度运行并消耗更少的能量。因此,该项目可以彻底改变数据处理、通信和存储领域的电子学,该项目涵盖新型材料的设计和合成,以及先进自旋电子器件的制造和表征。通过对结构和材料特性的表征,将获得对自旋电子材料的结构与性能关系的基本了解,该项目的成果预计将是有关如何制造高度电子器件的信息。该团队的劳动力发展计划的中心主题是技术交流,该方法旨在教育和培养来自五个机构的本科生和研究生,使其成为半导体行业的领导者。更好地沟通和识别可转让的该培训将作为推出具有集成行业认可证书的技术通信微型证书的蓝图,该项目将支持 75 名学生获得该证书。针对本科生和 K-12 受众,以提高对半导体行业工作的认识。这些活动将通过劳动力发展活动和行业合作伙伴关系得到加强。 技术说明:自旋无间隙半导体 (SGS) 是一种新型自旋电子材料。它们的电子能带结构对于一种自旋的电子具有有限的带隙,而对于另一种自旋的电子具有零带隙,这对于当前的SGS化合物通常表现出原子缺陷和无序性,这是材料自旋极化的关键因素。为了利用 SGS 作为高效自旋注入器的独特优势,这对于磁电自旋轨道 (MESO) 逻辑等自旋逻辑器件来说是必不可少的。使用 Mn2CoAl 作为平台,通过理解和操纵成分、加工和界面的影响来开发稳定近 SGS 行为的策略。这是一个材料-工艺-设备协同设计项目。团队正在确定化学成分、相、原子排序以及由此产生的电和磁输运特性之间的关系,在薄膜合成层面上,该团队正在利用溅射束外延进行低能、外延质量的薄膜生长。来自基础材料研究的成果将用于通过成分和加工控制来避免有害缺陷。在器件层面,该团队正在将薄 SGS 层纳米图案化到 MESO 器件自旋电荷读出侧的局部自旋注入结中。 ,这项研究不仅将制定一种将 SGS 材料用于自旋电子器件的策略,还将加深目前对材料成分、加工和界面如何共同影响自旋注入器性能的理解。该奖项反映了 NSF 的法定使命,并被认为是值得的的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Hauser其他文献
Adam Hauser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Hauser', 18)}}的其他基金
NRT: Alabama Collaborative for Contemporary Education in Precision Timing (ACCEPT)
NRT:阿拉巴马州精密计时当代教育合作组织 (ACCEPT)
- 批准号:
2244074 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
Standard Grant
CAREER: A roadmap to atomically ordered complex materials via control of entropic mixing
职业:通过控制熵混合实现原子有序复杂材料的路线图
- 批准号:
2047251 - 财政年份:2021
- 资助金额:
$ 37.16万 - 项目类别:
Continuing Grant
I-Corps: Chemical sensors for airborne detection
I-Corps:用于机载检测的化学传感器
- 批准号:
1931656 - 财政年份:2019
- 资助金额:
$ 37.16万 - 项目类别:
Standard Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 37.16万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 37.16万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 37.16万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 37.16万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 37.16万 - 项目类别:
Continuing Grant