Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform

合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台

基本信息

  • 批准号:
    2328974
  • 负责人:
  • 金额:
    $ 94.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

In traditional Von Neumann computing systems, a significant bottleneck arises because the data transfer speed to and from the computing units has considerably fallen behind capacity, processing speed, and efficiency. To mitigate this bottleneck by bridging the gap between storage and computation, many innovative storage technologies have been introduced, along with near- and in-memory processing solutions designed for both emerging and traditional memory systems. Nonetheless, a considerable challenge remains: the prototyping and characterization of actual fabricated systems, especially those encompassing both mature technologies and cutting-edge technologies. To overcome this challenge, this project develops a cutting-edge Retunable and Reconfigurable Acceleration Platform (R3AP) based on emerging racetrack memory, leveraging a device-architecture-application co-design approach. The standout features of R3AP include its ability to function as a reconfigurable logic, a processing-in-memory (PIM) accelerator, and a high-density memory storage. It is retunable, meaning it can operate with bit-wise, integer, and floating-point precision, and can simulate analog-like storage and processing. R3AP effectively mitigates data movement inefficiencies while offering domain-specific acceleration and adaptability. With its dense, reliable, energy-efficient, and ultra-low latency computational capability, R3AP has the potential to revolutionize the storage and processing capabilities of future computing systems, such as those in Internet of Things (IoT) and Cyber-Physical Systems (CPS). It can also be applied to high-performance and cloud computing systems. The project's findings are shared through publications, workshops, design contests, tutorials, industrial courses, and technology transfer activities. Educational resources and outreach activity plans are made available on the project website, and software artifacts are released on GitHub.To realize R3AP, the project comprises a series of interrelated research tasks spanning multiple system layers. At the device level, the project integrates the voltage-controlled skyrmion motion mechanism with the industrial-grade 8-inch wafer magnetic tunneling junction stack and demonstrates a fully functional Skyrmion racetrack memory (SRTM), including the formation, shifting, and detection of the skyrmion stream. Additionally, it evaluates the performance of SRTM, focusing on aspects such as write-error-rate, shift-error-rate, read-error-rate, operation speed, and energy consumption. It also addresses and mitigates non-idealities, such as the pinning effect, and goes on to develop and demonstrate CMOS-integrated SRTM. On the architecture and circuit layers, the project involves the creation of a mutable lookup table, compute, and memory unit. This unit performs like multi-context Field-Programmable Gate Array (FPGA) logic, parallel PIM logic, massively parallel accumulators, and analog-like storage and compute structures, leveraging the unique properties of SRTM. This layer ensures high-speed memory access from a hierarchy consisting of banks, subarrays, tiles, etc., and further adds links via configurable switch boxes and a mesh-based network-on-chip to enable data movement operations for PIM that would otherwise be challenging. At the application layer, the project develops novel modeling, analysis, design space exploration, and runtime adjustment techniques to exploit the high degree of reconfigurability provided by R3AP. The goal is to adapt future IoT and CPS applications to changing environments and requirements, optimize resource usage, withstand external disturbances, and enhance overall system performance, resilience, and sustainability. Across all these layers, the project develops a scalable computer-aided design (CAD) flow. This involves a multi-level intermediate representation-based compilation flow, which can compile high-level description languages such as PyTorch and C/C++ into binaries for the R3AP device. This flow uses a multi-level hierarchy including front-end, middle-end, and back-end compilation of the designs, and abstracts various optimization and management problems to a suitable level for efficient resolution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在传统的冯诺依曼计算系统中,由于计算单元之间的数据传输速度大大落后于容量、处理速度和效率,因此出现了严重的瓶颈。为了通过弥合存储和计算之间的差距来缓解这一瓶颈,人们引入了许多创新的存储技术,以及为新兴和传统内存系统设计的近内存和内存处理解决方案。尽管如此,仍然存在一个相当大的挑战:实际制造系统的原型设计和表征,特别是那些既包含成熟技术又包含尖端技术的系统。为了克服这一挑战,该项目开发了一种基于新兴赛道存储器的尖端可重调和可重配置加速平台(R3AP),利用设备-架构-应用程序协同设计方法。 R3AP 的突出特点包括其作为可重构逻辑、内存处理 (PIM) 加速器和高密度内存存储的能力。它是可重调的,这意味着它可以按位、整数和浮点精度进行操作,并且可以模拟类似模拟的存储和处理。 R3AP 有效缓解数据移动效率低下的问题,同时提供特定于域的加速和适应性。凭借其密集、可靠、节能和超低延迟的计算能力,R3AP 有潜力彻底改变未来计算系统的存储和处理能力,例如物联网 (IoT) 和网络物理系统 (Cyber​​-Physical Systems) 中的计算系统。 CPS)。它还可以应用于高性能和云计算系统。该项目的研究成果通过出版物、研讨会、设计竞赛、教程、工业课程和技术转让活动进行分享。教育资源和推广活动计划在项目网站上提供,软件工件在 GitHub 上发布。为了实现 R3AP,该项目包括一系列跨越多个系统层的相互关联的研究任务。在器件层面,该项目将压控斯格明子运动机制与工业级8英寸晶圆磁隧道结堆栈集成,并演示了功能齐全的斯格明子赛道存储器(SRTM),包括形成、移位和检测斯格明子流。此外,它还评估了SRTM的性能,重点关注写入错误率、移位错误率、读取错误率、运行速度和能耗等方面。它还解决和减轻非理想问题,例如钉扎效应,并继续开发和演示 CMOS 集成的 SRTM。在架构和电路层,该项目涉及创建可变查找表、计算和存储单元。该单元的性能类似于多上下文现场可编程门阵列 (FPGA) 逻辑、并行 PIM 逻辑、大规模并行累加器以及类模拟存储和计算结构,利用 SRTM 的独特属性。该层确保从由存储体、子阵列、块等组成的层次结构进行高速内存访问,并通过可配置的开关盒和基于网状的片上网络进一步添加链接,以实现 PIM 的数据移动操作,否则这些操作将无法进行。具有挑战性。在应用层,该项目开发了新颖的建模、分析、设计空间探索和运行时调整技术,以利用 R3AP 提供的高度可重构性。目标是使未来的物联网和 CPS 应用适应不断变化的环境和要求,优化资源使用,抵御外部干扰,并增强整体系统性能、弹性和可持续性。在所有这些层面上,该项目开发了一个可扩展的计算机辅助设计 (CAD) 流程。这涉及到基于多级中间表示的编译流程,可以将 PyTorch 和 C/C++ 等高级描述语言编译为 R3AP 设备的二进制文件。该流程采用包括前端、中端和后端编译设计在内的多级层次结构,将各种优化和管理问题抽象到合适的级别以进行高效解决。该奖项体现了 NSF 的法定使命,并得到了美国国家科学基金会 (NSF) 的认可。通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kang Wang其他文献

High performance direct flame fuel cell
高性能直焰燃料电池
Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Perfect Reasoners
在%20GSM8K上实现%20>97%%20:%20深入%20理解%20%20问题%20使%20LLMs%20完美%20原因
  • DOI:
  • 发表时间:
    1970-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qihuang Zhong;Kang Wang;Ziyang Xu;Juhua Liu;Liang Ding;Bo Du;D. Tao;Ouyang Long;Jeffrey Wu;Xu Jiang;Diogo Almeida;Carroll L. Wainwright;Pamela Mishkin;Chong Zhang;S;hini Agarwal;hini;Katarina Slama;Alex Ray;John Schulman;Jacob Hilton;Fraser Kelton;Luke Miller;Maddie Simens;Am;a Askell;a;P. Welinder;P. Christiano;J. Leike;Ryan Lowe. 2022;Victor Sanh;Albert Webson;Colin Raffel;Stephen H. Bach;Lintang Sutawika;Zaid Alyafeai;Antoine Chaffin;Arnaud Stiegler;Arun Raja;Manan Dey;Saiful Bari;Canwen Xu;Urmish Thakker;Shanya Sharma;Eliza Szczechla;Taewoon Kim;Gunjan Chhablani;Nihal Nayak;Debajyoti Datta;Mike Jonathan Chang;Tianyuan Jiang;Han Wang;Matteo Manica;Sheng Shen;Zheng;Harshit P;ey;ey;Rachel Bawden;Thomas Wang;Trishala Neeraj;Jos Rozen;Abheesht Sharma;A. Santilli;Thibault Févry;Jason Alan Fries;Ryan Teehan;Teven Le Scao;Stella Biderman;Leo Gao;Thomas Wolf;Ale;er M Rush. 2022;er;Multi;Alon Talmor;Jonathan Herzig;Nicholas Lourie;Jonathan Berant. 2019;Commonsenseqa;R. Thoppilan;Daniel De Freitas;Jamie Hall;Noam M. Shazeer;Apoorv Kulshreshtha;Heng;Alicia Jin;Taylor Bos;Leslie Baker;Yu Du;Hugo Touvron;Louis Martin;Kevin Stone;Peter Al;Amjad Almahairi;Yasmine Babaei;Nikolay Bashlykov;Soumya Batra;Prajjwal Bhargava;Shruti;Lei Wang;Wanyu Xu;Yihuai Lan;Zhiqiang Hu;Yunshi Lan;Roy Ka;Xuezhi Wang;Jason Wei;Dale Schuurmans;V. Quoc;H. LeEd;Sharan Chi;Aakanksha Narang;Chowdhery Denny;Zhou;Maarten Bosma;E. Chi;Quoc V. Le;Denny Zhou. 2022;Xiaohan Xu;Chongyang Tao;Tao Shen;Shunyu Yao;Dian Yu;Jeffrey Zhao;Izhak Shafran;Thomas L. Griffiths;Yuan Cao;Karthik Narasimhan. 2023;Longhui Yu;Weisen Jiang;Han Shi;Jincheng Yu;Zhengying Liu;Yu Zhang;James T. Kwok;Zhenguo Li;Adrian Weller;Weiyang Liu;Meta;Zheng Yuan;Hongyi Yuan;Chengpeng Li;Guanting Dong;Ke Lu;Chuanqi Tan;Chang Zhou;Jingren Zhou. 2023;Nathanael Schärli;Le Hou
  • 通讯作者:
    Le Hou
Reinforcement Learning with Evolutionary Trajectory Generator: A General Approach for Quadrupedal Locomotion
使用进化轨迹生成器的强化学习:四足运动的通用方法
  • DOI:
    10.1109/lra.2022.3145495
  • 发表时间:
    2021-09-14
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Hao;Bo Zhou;Hongsheng Zeng;Fan Wang;Yueqiang Dong;Jiangyong Li;Kang Wang;Hao Tian;M. Meng
  • 通讯作者:
    M. Meng
Crystal structure of DszC from Rhodococcus sp. XP at 1.79 Å
红球菌属 DszC 的晶体结构。
  • DOI:
    10.1002/prot.24525
  • 发表时间:
    2014-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shiheng Liu;Conggang Zhang;T. Su;T. Wei;Deyu Zhu;Kang Wang;Y. Huang;Yuhui Dong;K. Yin;Sujuan Xu;P. Xu;L. Gu
  • 通讯作者:
    L. Gu
An Attribute-based Method for Identifying Implicit Contradictions in Product Development
一种基于属性的产品开发隐性矛盾识别方法
  • DOI:
    10.14733/cadaps.2023.439-455
  • 发表时间:
    2022-09-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fanfan Wang;Q. Peng;R. Tan;Kang Wang;Shan Zhang;Jianguang Sun
  • 通讯作者:
    Jianguang Sun

Kang Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kang Wang', 18)}}的其他基金

Workshop on Future of Semiconductors and Beyond: Devices and Technologies: To Be Held Virtually Feb 8-9, and 17-18, 2021.
半导体及未来的未来研讨会:设备和技术:将于 2021 年 2 月 8 日至 9 日和 17 日至 18 日虚拟举行。
  • 批准号:
    2111191
  • 财政年份:
    2021
  • 资助金额:
    $ 94.5万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track C: Chiral-Based Quantum Interconnect Technologies (CirquiTs)
NSF 融合加速器轨道 C:基于手性的量子互连技术 (CirquiTs)
  • 批准号:
    2040737
  • 财政年份:
    2020
  • 资助金额:
    $ 94.5万
  • 项目类别:
    Standard Grant
Ultra-fast energy efficient ferrimagnetic memory
超快节能亚铁磁存储器
  • 批准号:
    1935362
  • 财政年份:
    2019
  • 资助金额:
    $ 94.5万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Skyrmion Mediated Energy-efficient VCMA Switching of 2-Terminal p-MTJ Memory
SHF:小型:合作研究:Skyrmion 介导的 2 端子 p-MTJ 存储器的节能 VCMA 开关
  • 批准号:
    1909416
  • 财政年份:
    2019
  • 资助金额:
    $ 94.5万
  • 项目类别:
    Standard Grant
Magnetic Skyrmion for Nonvolatile Low-Power Spin-Orbitronics Applications
用于非易失性低功耗自旋轨道电子学应用的磁性斯格明子
  • 批准号:
    1611570
  • 财政年份:
    2016
  • 资助金额:
    $ 94.5万
  • 项目类别:
    Standard Grant
Ultrafast Magneto-Plasmonic Effects in Ferrimagnetic Nanomaterials
亚铁磁纳米材料中的超快磁等离子体效应
  • 批准号:
    1411085
  • 财政年份:
    2014
  • 资助金额:
    $ 94.5万
  • 项目类别:
    Continuing Grant
Diluted Magnetic Germanium Nanowire-Based Nonvolatile Transpinor
基于稀磁锗纳米线的非易失性 Transpinor
  • 批准号:
    1308358
  • 财政年份:
    2013
  • 资助金额:
    $ 94.5万
  • 项目类别:
    Standard Grant
Seventh International Nanotechnology Conference on Communication and Cooperation (INC7). To be Held May 16-19, 2011, in Tsukuba, Japan.
第七届国际纳米技术交流与合作会议(INC7)。
  • 批准号:
    1114792
  • 财政年份:
    2011
  • 资助金额:
    $ 94.5万
  • 项目类别:
    Standard Grant
Conference Grant:Attend the Sixth International Nanotechnology Conference on Communication and Cooperation(INC6)to be Held in Grenoble, France, May 17-20, 2010.
会议资助:参加2010年5月17-20日在法国格勒诺布尔举行的第六届国际纳米技术交流与合作会议(INC6)。
  • 批准号:
    1019028
  • 财政年份:
    2010
  • 资助金额:
    $ 94.5万
  • 项目类别:
    Standard Grant
Conference Grant for the Fifth International Nanotechnology Conference on Communication and Cooperation. To Be Held in Los Angeles, CA, May 18-21, 2009.
第五届国际纳米技术交流与合作会议的会议补助金。
  • 批准号:
    0920971
  • 财政年份:
    2009
  • 资助金额:
    $ 94.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 94.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 94.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 94.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 94.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 94.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了