QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function

QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像

基本信息

项目摘要

This project is jointly funded by the Quantum Sensing Challenges (QuSeC) Program, and the Established Program to Stimulate Competitive Research (EPSCoR). Two-photon imaging uses intense laser pulses to excite fluorescent proteins within living tissues and is widespread in the biological sciences for functional imaging of time-varying processes. The two-photon absorption process has increased spatial resolution compared to one-photon absorption but is less efficient and thus requires high light intensity to increase the likelihood that two photons will arrive at a fluorophore simultaneously. This research project will produce excitation light sources with quantum entanglement between photons, which will increase the likelihood of two photons arriving simultaneously, thus making two-photon absorption and imaging more efficient. Improved efficiency will enable lower laser intensities, reducing damage to tissue, enabling longer and more frequent measurements. Similar entanglement effects will also improve the efficiency of three-photon absorption, which operates at a wavelength that penetrates more deeply into tissue. Existing two-photon imaging facilities at West Virginia University will be upgraded with quantum-entangled light sources. Postdoctoral, graduate and undergraduate researchers will be trained in an interdisciplinary laboratory setting combining physics, biology, and neuroscience. Teaching modules will be devised to raise quantum awareness in a Quantum Summer School for undergraduates. Fluorescence imaging using 2-photon excitation represents the state-of-the-art for functional imaging of neurons within the nervous system. Neural dynamics can be captured by recording fluorescence images as a function of time. Yet there remain limitations to 2-photon fluorescence imaging stemming from the inefficiency of the excitation process, which relies on simultaneous absorption of two independent photons from a laser pulse. Simultaneous absorption is unlikely with classical photon distributions; thus 2-photon excitation requires intense excitation that can damage tissue and reduces the experimental duration in live animals. This project leverages quantum correlations between time-energy-entangled photons to enhance the efficiency of multi-photon imaging in the brains of living animals (fruit flies and mice). Multi-photon imaging will report neuron activity through the excitation of the GCaMP family of fluorescent calcium indicators. Improved efficiency will enable imaging deeper into the tissue, better imaging earlier in development, and imaging of otherwise weakly expressed fluorophores, all while reducing damage due to phototoxicity. This will allow longer measurement times and require fewer live animals to be prepared, increasing the efficiency of time and money allotted to research. Extension to 3-photon absorption with even longer wavelengths will allow penetration through more opaque materials such as insect cuticle or rodent skull.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由量子传感挑战 (QuSeC) 计划和刺激竞争性研究既定计划 (EPSCoR) 联合资助。双光子成像使用强激光脉冲来激发活体组织内的荧光蛋白,在生物科学中广泛用于时变过程的功能成像。与单光子吸收相比,双光子吸收过程提高了空间分辨率,但效率较低,因此需要高光强度来增加两个光子同时到达荧光团的可能性。该研究项目将产生光子之间具有量子纠缠的激发光源,这将增加两个光子同时到达的可能性,从而使双光子吸收和成像更加高效。提高效率将降低激光强度,减少对组织的损伤,从而实现更长时间和更频繁的测量。类似的纠缠效应也将提高三光子吸收的效率,三光子吸收的波长可以更深入地渗透到组织中。西弗吉尼亚大学现有的双光子成像设施将使用量子纠缠光源进行升级。博士后、研究生和本科生研究人员将在结合物理学、生物学和神经科学的跨学科实验室环境中接受培训。将设计教学模块来提高本科生量子暑期学校的量子意识。使用 2 光子激发的荧光成像代表了神经系统内神经元功能成像的最先进技术。可以通过记录荧光图像作为时间的函数来捕获神经动力学。然而,由于激发过程效率低下,2 光子荧光成像仍然存在局限性,该过程依赖于同时吸收激光脉冲中的两个独立光子。经典光子分布不可能同时吸收;因此,2 光子激发需要强烈的激发,这可能会损伤组织并缩短活体动物的实验持续时间。该项目利用时间-能量纠缠光子之间的量子相关性来提高活体动物(果蝇和小鼠)大脑中多光子成像的效率。多光子成像将通过荧光钙指示剂 GCaMP 系列的激发来报告神经元活动。效率的提高将使成像更深入组织,在发育早期更好地成像,以及对其他表达较弱的荧光团进行成像,同时减少光毒性造成的损伤。这将允许更长的测量时间,并且需要准备更少的活体动物,从而提高分配给研究的时间和金钱的效率。扩展到更长波长的 3 光子吸收将允许穿透更不透明的材料,如昆虫角质层或啮齿动物头骨。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Flagg其他文献

From Basic Participation to Transformation: Immersive Virtual Professional Development
从基本参与到转型:沉浸式虚拟专业发展
  • DOI:
    10.4018/978-1-4666-5780-9.ch025
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Diana Ayling;H. Owen;Edward Flagg
  • 通讯作者:
    Edward Flagg

Edward Flagg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Flagg', 18)}}的其他基金

RII Track-4: NSF: Fabrication of Inversely Designed Nanophotonic Structures for Quantum Emitters
RII Track-4:NSF:用于量子发射器的逆向设计纳米光子结构的制造
  • 批准号:
    2327223
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Fabrication of Inversely Designed Nanophotonic Structures for Quantum Emitters
RII Track-4:NSF:用于量子发射器的逆向设计纳米光子结构的制造
  • 批准号:
    2327223
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
CAREER: Coherent Single-Photons for Quantum Information
职业:用于量子信息的相干单光子
  • 批准号:
    1452840
  • 财政年份:
    2015
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QuIC-TAQS: Deterministically Placed Nuclear Spin Quantum Memories for Entanglement Distribution
QuIC-TAQS:用于纠缠分布的确定性放置的核自旋量子存储器
  • 批准号:
    2137828
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
RAISE: TAQS: On-Chip Entanglement, Preparation, Manipulation, and Detection for Integrated All Quantum Information Processing
RAISE:TAQS:用于集成全量子信息处理的片上纠缠、准备、操纵和检测
  • 批准号:
    1838435
  • 财政年份:
    2018
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
RAISE:TAQS: High Dimensional Frequency Bin Entanglement -- Photonic Integration and Algorithms
RAISE:TAQS:高维频率仓纠缠——光子集成和算法
  • 批准号:
    1839191
  • 财政年份:
    2018
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了