QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries

QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感

基本信息

  • 批准号:
    2326840
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

This project addresses a pressing challenge for society - how to track and to respond to a rapidly changing climate. The goal is to develop and demonstrate a quantum sensing platform that features an in situ distributed sensor network to measure and understand atmospheric chemistries and climate variables. At its most fundamental level, an entangled quantum network is capable of sensing multiple geographically and locally distinct systems with higher precision than the summation of each system probed individually. Entangled networks can thus elucidate non-classical correlations between probes over distributed nodes. Extending the physical limits of sensing to measure and analyze complex datasets from the environment at the thermodynamic and quantum noise limits can aid with societal well-being and public health. The convergent expertise of the team assembled brings together quantum science & engineering, electrical & computer engineering, atmospheric & geosciences, chemistry & biochemistry, and applied mathematics. This effort is aligned with the launch of the US CHIPS and Science Act, and for US competitiveness in quantum technologies. Atmospheric and geoscientists will leverage new quantum measurement technologies from this project to address key measurement challenges: varied measured environments, better time resolution in spectroscopy, higher sensitivity through distributed entanglement, and/or the ability to measure transient species. A major societal impact will be in public health decision-making, based on newly enabled measurements and real-time analyses of atmospheric chemistries with unprecedented spatial-temporal resolution, providing actionable information on locality, e.g., to prevent respiratory illness, enabled in real-time by a comprehensive entangled network of quantum sensors. With UCLA on track to become an Hispanic Serving Institution (HSI) by 2025, this effort develops a highly qualified, diverse workforce, building on a track-record of non-traditional education programs, including the Cal-Bridge and Physics Bridge, creating opportunities for historically underrepresented groups at Cal State campuses. UCLA Women in Engineering WE@UCLA Technical Academies will introduce quantum sensing with programming around this program’s technologies resulting, in collaboration with industry, startups, and non-academic stakeholders in atmospheric chemistry and geosciences.Quantum sensing is a powerful paradigm that encompasses the use of non-classical states of light and matter to probe species of interest. Compared to classical probes, non-classical states of light in metrology, including frequency-multiplexed high-dimensional entangled photons and squeezed light across distributed networks, exhibit uncharted sensing capabilities. This project comprises two interdisciplinary and synergistic Thrusts: 1. quantum-enabled networked sensor systems, involving sensor data fusion and multimodal learning on quantum sensors, and distributed entanglement-assisted high-dimensional precision phase metrology in remote sensing at and beyond the standard quantum limit (SQL). This effort is complemented with thrust 2. on quantum sensor arrays for molecular fingerprinting, involving hyperspectral dual-comb spectroscopy and stabilization beyond the standard quantum limit, and molecular dual-comb spectroscopy at the Schawlow-Townes limits and a quantum-limited THz spectrometer. Relevant to the broader quantum sensing community, the program will demonstrate distributed entanglement for quantum metrology towards below-SQL biochemical sensitivities, including biphoton and multi-partite time-frequency entanglement sources, in the presence of noise and channel losses in each sensing pathway. The team focus will be on chemical species that are challenging to measure, including reduced and oxidized forms of N, S, and C, as well as NH3, NOx, and free radical chemistries. Further, the team leverages and advances the mathematics of real-time analyses and quantum sensor data fusion. This project was co-funded by the Quantum Sensors Challenge for Transformative Advances in Quantum Systems (QuSeC-TAQS) program, and the NSF Office of International Science and Engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目解决了社会面临的紧迫挑战——如何跟踪和应对快速变化的气候。目标是开发和演示一个量子传感平台,该平台具有原位分布式传感器网络,用于测量和了解大气化学和气候变量。在最基本的层面上,纠缠量子网络能够以比单独探测的每个系统的总和更高的精度来感知多个地理和局部不同的系统,因此可以阐明分布式节点上的探测之间的非经典相关性。在热力学和量子噪声极限下测量和分析来自环境的复杂数据集的传感物理极限可以帮助社会福祉和公共健康。这项工作与美国《芯片和科学法案》的推出相一致,为了提高美国在量子技术方面的竞争力,大气和地球科学家将利用该项目的新量子测量技术来解决关键问题。测量挑战:测量不同的环境,更好的光谱时间分辨率,通过分布式纠缠提高灵敏度,和/或测量瞬态物种的能力,主要的社会影响将是基于新启用的测量和实时的公共卫生决策。以前所未有的时空分辨率分析大气化学成分,提供有关当地的可操作信息,例如通过全面的量子传感器纠缠网络实时预防呼吸道疾病,加州大学洛杉矶分校有望成为西班牙裔服务机构。 (HSI) 到 2025 年,这项工作以加州大学桥和物理桥等非传统教育项目的记录为基础,培养一支高素质、多元化的劳动力队伍,为加州大学洛杉矶分校校园历史上代表性不足的群体创造机会。工程界女性 WE@UCLA 技术学院将与大气化学和地球科学领域的行业、初创公司和非学术利益相关者合作,通过围绕该项目技术进行编程来引入量子传感。与经典探针相比,计量学中的非经典光态包括使用光和物质的非经典态来探测感兴趣的物种,包括频率复用的高维纠缠光子和跨分布式网络的压缩光。 ,展示未知的传感能力。该项目包括两个跨学科和协同的重点:1.量子网络传感器系统,涉及传感器数据融合和量子传感器的多模态学习,以及分布式纠缠辅助。遥感中达到或超出标准量子极限(SQL)的高维精密相位计量这项工作得到了关于用于分子指纹识别的量子传感器阵列的推力2的补充,涉及高光谱双梳光谱和超出标准量子极限的稳定性,和 Schawlow-Townes 极限的分子双梳光谱仪以及量子限制的太赫兹光谱仪 与更广泛的量子传感领域相关,该项目将展示低于 SQL 的量子计量学的分布式纠缠。生化敏感性,包括双光子和多部分时频损耗纠缠源,在每个传感路径中存在噪声和通道的情况下,该团队将重点关注难以测量的化学物质,包括还原形式和氧化形式的氮, S、C、以及 NH3、NOx 和自由基化学此外,该团队利用并推进了实时分析和量子传感器数据融合的数学。量子传感器挑战量子系统变革性进展 (QuSeC-TAQS) 计划和 NSF 国际科学与工程办公室。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prineha Narang其他文献

Carrier dynamics and spin–valley–layer effects in bilayer transition metal dichalcogenides
  • DOI:
    10.1039/c8fd00159f
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Christopher J. Ciccarino;Chitraleema Chakraborty;Dirk R. Englund;Prineha Narang
  • 通讯作者:
    Prineha Narang
Applications of plasmonics: general discussion
  • DOI:
    10.1039/c5fd90025e
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Vladimir Bochenkov;Jeremy Baumberg;Mikhail Noginov;Felix Benz;Hasan Aldewachi;Silvan Schmid;Viktor Podolskiy;Javier Aizpurua;Kaiqiang Lin;Thomas Ebbesen;Alexei A Kornyshev;James Hutchison;Katarzyna Matczyszyn;Samir Kumar;Bart de Nijs;Francisco Rodríguez Fortuño;James T. Hugall;Pablo de Roque;Niek van Hulst;Santhosh Kotni;Olivier Martin;F. Javier García de Abajo;Michael Flatté;Andrew Mount;Martin Moskovits;Pavel Ginzburg;David Zueco;Anatoly Zayats;Sang-Hyun Oh;Yu Chen;David Richards;Alessandro Belardini;Prineha Narang
  • 通讯作者:
    Prineha Narang

Prineha Narang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prineha Narang', 18)}}的其他基金

NSF Convergence Accelerator Track L: Portable Quantum-enhanced Sensing and Species Identification of Bioaerosols
NSF 融合加速器轨道 L:生物气溶胶的便携式量子增强传感和物种识别
  • 批准号:
    2344350
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
RAISE-QAC-QSA: Open Quantum Systems on Noisy Intermediate-Scale Quantum Devices
RAISE-QAC-QSA:噪声中等规模量子设备上的开放量子系统
  • 批准号:
    2331441
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
U.S.-Ireland R&D Partnership: Collaborative Research: CNS Core: Medium: A unified framework for the emulation of classical and quantum physical layer networks
美国-爱尔兰 R
  • 批准号:
    2247007
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
CAREER: First Principles Design of Error-Corrected Solid-State Quantum Repeaters
职业:纠错固态量子中继器的第一原理设计
  • 批准号:
    2246394
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
U.S.-Ireland R&D Partnership: Collaborative Research: CNS Core: Medium: A unified framework for the emulation of classical and quantum physical layer networks
美国-爱尔兰 R
  • 批准号:
    2106887
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
CAREER: First Principles Design of Error-Corrected Solid-State Quantum Repeaters
职业:纠错固态量子中继器的第一原理设计
  • 批准号:
    1944085
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
RAISE-QAC-QSA: Open Quantum Systems on Noisy Intermediate-Scale Quantum Devices
RAISE-QAC-QSA:噪声中等规模量子设备上的开放量子系统
  • 批准号:
    2037783
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: Atomic-Scale Hybrids, Tuning the IR Dielectric Function through Superlattice Design
合作研究:原子级混合体,通过超晶格设计调节红外介电函数
  • 批准号:
    1905295
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Compact and Robust Quantum Atomic Sensors for Timekeeping and Inertial Sensing
QuSeC-TAQS:用于计时和惯性传感的紧凑且坚固的量子原子传感器
  • 批准号:
    2326784
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entangled Quantum-Enhanced Interferometric Imaging for Telescopy and Metrology
QuSeC-TAQS:用于望远镜和计量的分布式纠缠量子增强干涉成像
  • 批准号:
    2326803
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了