AF: Small: Understanding Expansion Phenomena: Graphical, Hypergraphical, Geometric, and Quantum
AF:小:理解膨胀现象:图形、超图形、几何和量子
基本信息
- 批准号:2326685
- 负责人:
- 金额:$ 20.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A broad variety of phenomena in computation can be viewed as different forms of “expansion”, which ensure that local properties which can be observed by looking at small parts of an object, can be used to influence and understand global properties exhibited at a much larger scale. This is an important design requirement in several applications, such as (1) classical and quantum error-correction, where one wants errors to be easily detectable by local checks, (2) optimization problems, where one wants local choices to push the global solution towards optimality, and (3) geometric embeddings of high-dimensional data, where one wants to use local (low-dimensional) conditions to influence high-dimensional behavior. In the past few years, several new concepts and techniques have emerged to study expansion phenomena in different contexts. This project aims to study several different forms of expansion phenomena in a unified way, with an emphasis on applications in the areas of error-correcting codes and (approximate) optimization. This research is likely to lead to new connections between multiple areas where such phenomena are useful. The material generated as part of this research will also be disseminated through surveys and a series of expository videos. This project aims to obtain a unified view of the following different forms and applications of expansion phenomena:- Classical notions of graph expansion and novel notions of high-dimensional expansion for hypergraphs, and their connections to recent advances in coding theory.- Applications of classical expansion phenomena to quantum codes, as well as quantum extensions of classical expansion phenomena.- Connections of high-dimensional expansion to the study and approximability of expansion phenomena in geometric spaces, and related problems about fine-grained graph expansion.The research directions pursued in this project aim to introduce new techniques in algorithmic coding theory and in the study of approximability of discrete and continuous optimization problems. The project considers several problems that have proved to be bottlenecks for current algorithmic and analytic techniques, explores new approaches arising from the study of expansion in a different context. The project aims to apply these ideas for the design of new error-correcting codes, and new algorithms for existing codes, towards the design of new pseudorandom objects, and also new families of combinatorial and geometric instances for proving inapproximability results.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算中的各种现象可以被视为不同形式的“扩展”,这确保通过观察对象的小部分可以观察到的局部属性可以用于影响和理解在更大范围内表现出的全局属性在多种应用中,这是一项重要的设计要求,例如(1)经典和量子纠错,人们希望通过本地检查轻松检测到错误,(2)优化问题,人们希望本地选择推动结果。朝向最优性的全局解,以及 (3) 几何高维数据的嵌入,人们希望利用局部(低维)条件来影响高维行为。在过去的几年中,出现了一些新的概念和技术来研究不同背景下的扩展现象。以统一的方式研究几种不同形式的扩展现象,重点是纠错码和(近似)优化领域的应用。这项研究可能会在这些现象有用的多个领域之间建立新的联系。作为本研究的一部分生成的材料将也可以通过调查和一系列说明性视频来传播,该项目旨在获得对扩展现象的以下不同形式和应用的统一视图:-图扩展的经典概念和超图高维扩展的新颖概念及其。与编码理论最新进展的联系。-经典膨胀现象在量子代码中的应用,以及经典膨胀现象的量子扩展。-高维膨胀与几何空间中膨胀现象的研究和近似性以及相关问题的联系关于该项目的研究方向旨在引入算法编码理论以及离散和连续优化问题的逼近性研究中的新技术。该项目考虑了几个已被证明是当前算法和优化问题的瓶颈问题。该项目旨在将这些思想应用于新的纠错码的设计和现有代码的新算法,以及新的伪随机对象的设计。也是新的该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Madhur Tulsiani其他文献
Algorithms and hardness for subspace approximation
子空间近似的算法和难度
- DOI:
10.1137/1.9781611973082.39 - 发表时间:
2009-12-07 - 期刊:
- 影响因子:0
- 作者:
A. Deshpande;Madhur Tulsiani;Nisheeth K. Vishnoi - 通讯作者:
Nisheeth K. Vishnoi
Time Space Tradeoffs for Attacks against One-Way Functions and PRGs
针对单向函数和 PRG 的攻击的时空权衡
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Anindya De;L. Trevisan;Madhur Tulsiani - 通讯作者:
Madhur Tulsiani
Regularity, Boosting, and Efficiently Simulating Every High-Entropy Distribution
规律性、增强和有效模拟每个高熵分布
- DOI:
10.1109/ccc.2009.41 - 发表时间:
2009-07-15 - 期刊:
- 影响因子:0
- 作者:
L. Trevisan;Madhur Tulsiani;S. Vadhan - 通讯作者:
S. Vadhan
On LP-based approximability for strict CSPs
关于严格 CSP 的基于 LP 的近似性
- DOI:
10.1137/1.9781611973082.121 - 发表时间:
2011-01-23 - 期刊:
- 影响因子:13.6
- 作者:
Amit Kumar;R. Manokaran;Madhur Tulsiani;Nisheeth K. Vishnoi - 通讯作者:
Nisheeth K. Vishnoi
Multiplicative Approximations for Polynomial Optimization Over the Unit Sphere
单位球面上多项式优化的乘法近似
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
V. Bhattiprolu;Mrinalkanti Ghosh;V. Guruswami;Euiwoong Lee;Madhur Tulsiani - 通讯作者:
Madhur Tulsiani
Madhur Tulsiani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Madhur Tulsiani', 18)}}的其他基金
AF: Small: Parallels in Approximability of Discrete and Continuous Optimization Problems
AF:小:离散和连续优化问题的近似性的相似性
- 批准号:
1816372 - 财政年份:2018
- 资助金额:
$ 20.22万 - 项目类别:
Standard Grant
CAREER: Understanding Polynomial Structure Analytically and Algorithmically
职业:通过分析和算法理解多项式结构
- 批准号:
1254044 - 财政年份:2013
- 资助金额:
$ 20.22万 - 项目类别:
Continuing Grant
相似国自然基金
ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
- 批准号:82301557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
- 批准号:82372852
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
- 批准号:82305399
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
- 批准号:82373364
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
分単位の迅速な小胞体リモデリングの分子基盤と生理的意義の解明
阐明几分钟内快速内质网重塑的分子基础和生理意义
- 批准号:
24K09365 - 财政年份:2024
- 资助金额:
$ 20.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
小学生の抱える言語的課題の原因解明と解決を目指す日本語学・心理学の連携的研究
日语与心理学的合作研究,旨在阐明和解决小学生语言问题的原因
- 批准号:
24K06030 - 财政年份:2024
- 资助金额:
$ 20.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RI: Small: Understanding Hand Interaction In The Jumble of Internet Videos
RI:小:在混乱的互联网视频中理解手部交互
- 批准号:
2426592 - 财政年份:2024
- 资助金额:
$ 20.22万 - 项目类别:
Standard Grant
透析患者に発生する腎細胞癌のOmics解析と腫瘍免疫微小環境の統合的理解
透析患者发生肾细胞癌的组学分析及肿瘤免疫微环境的综合理解
- 批准号:
24K12492 - 财政年份:2024
- 资助金额:
$ 20.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Understanding the Dynamic Mechanical Adaptations of Bone Tissue at Small Length Scales
职业:了解小长度尺度下骨组织的动态机械适应
- 批准号:
2339836 - 财政年份:2024
- 资助金额:
$ 20.22万 - 项目类别:
Standard Grant