AF: Small: Parallels in Approximability of Discrete and Continuous Optimization Problems

AF:小:离散和连续优化问题的近似性的相似性

基本信息

  • 批准号:
    1816372
  • 负责人:
  • 金额:
    $ 49.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Optimization problems arise naturally in many areas such as scheduling, artificial intelligence, software engineering, control of robotic systems, statistics and machine learning. Many of these problems require too long to solve exactly - a common approach for dealing with this has been to design techniques which can efficiently find approximate solutions that are 'good enough' for the task at hand. The study of what approximations are best possible, as well as methods for achieving them, has also led to many new ideas in theoretical computer science, leading to a rich mathematical theory. This project considers several such problems (arising in different areas) which represent challenges to our current understanding. The goal of the project is to develop unified techniques for solving and analyzing them. The project includes several opportunities for training and mentoring of graduate and undergraduate students. Another aim of the project is to develop a collaborative forum for theoretical computer science students in the Chicago area, which can be used to discuss technical ideas and develop expository material.This project considers various problems in discrete and continuous optimization, which represent bottlenecks for algorithmic techniques for designing approximation algorithms, as well as for techniques proving hardness of approximation. The difficulty of understanding many of these problems arises from the fact that many of them only impose a relatively weak global constraint on the solutions, which is hard to exploit algorithmically and also not amenable to techniques for proving inapproximability. The project considers several continuous optimization problems which offer an ideal testbed for the development of new algorithmic techniques, while still capturing the bottlenecks in proving inapproximability of related discrete problems. The aim of this project is to examine such problems from the following perspectives: (1) average-case hardness and lower bounds for the Sum-of-Squares hierarchy of convex relaxations; (2) techniques and barriers for proving inapproximability; and (3) conditions under which good approximations are achievable.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
优化问题自然出现在许多领域,例如调度、人工智能、软件工程、机器人系统控制、统计和机器学习。其中许多问题需要太长时间才能准确解决 - 处理此问题的常见方法是设计能够有效找到对于当前任务“足够好”的近似解决方案的技术。对什么是最好的近似以及实现它们的方法的研究也引发了理论计算机科学的许多新思想,从而产生了丰富的数学理论。该项目考虑了几个此类问题(出现在不同领域),这些问题对我们当前的理解提出了挑战。该项目的目标是开发解决和分析这些问题的统一技术。该项目包括多个培训和指导研究生和本科生的机会。该项目的另一个目标是为芝加哥地区的理论计算机科学学生建立一个协作论坛,可用于讨论技术思想和开发说明材料。该项目考虑了离散和连续优化中的各种问题,这些问题代表了算法的瓶颈设计近似算法的技术,以及证明近似硬度的技术。理解这些问题中的许多问题的困难在于,许多问题仅对解决方案施加相对较弱的全局约束,这很难通过算法来利用,也不适合证明不可近似性的技术。该项目考虑了几个连续优化问题,为新算法技术的开发提供了理想的测试平台,同时仍然捕获了证明相关离散问题不可近似性的瓶颈。该项目的目的是从以下角度研究此类问题:(1)平均情况硬度和凸松弛平方和层次结构的下界; (2) 证明不可近似性的技术和障碍; (3) 可以实现良好近似值的条件。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Concentration of polynomial random matrices via Efron-Stein inequalities
通过 Efron-Stein 不等式进行多项式随机矩阵的集中
Separating the NP-Hardness of the Grothendieck Problem from the Little-Grothendieck Problem
将 Grothendieck 问题的 NP 难度与 Little-Grothendieck 问题分开
Approximability of p → q Matrix Norms: Generalized Krivine Rounding and Hypercontractive Hardness
p – q 矩阵范数的近似性:广义 Krivine 舍入和超收缩硬度
  • DOI:
    10.1137/1.9781611975482.83
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    V. Bhattiprolu;Mrinalkanti Ghosh;V. Guruswami;Euiwoong Lee;Madhur Tulsiani
  • 通讯作者:
    Madhur Tulsiani
Near-linear time decoding of Ta-Shma’s codes via splittable regularity
通过可分割正则性对 Ta-Shma 码进行近线性时间解码
Explicit Abelian Lifts and Quantum LDPC Codes
显式阿贝尔提升和量子 LDPC 码
  • DOI:
    10.4230/lipics.itcs.2022.88
  • 发表时间:
    2021-12-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. G. Jeronimo;Tushant Mittal;R. O'Donnell;Pedro Paredes;Madhur Tulsiani
  • 通讯作者:
    Madhur Tulsiani
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Madhur Tulsiani其他文献

Algorithms and hardness for subspace approximation
子空间近似的算法和难度
  • DOI:
    10.1137/1.9781611973082.39
  • 发表时间:
    2009-12-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Deshpande;Madhur Tulsiani;Nisheeth K. Vishnoi
  • 通讯作者:
    Nisheeth K. Vishnoi
Time Space Tradeoffs for Attacks against One-Way Functions and PRGs
针对单向函数和 PRG 的攻击的时空权衡
Regularity, Boosting, and Efficiently Simulating Every High-Entropy Distribution
规律性、增强和有效模拟每个高熵分布
On LP-based approximability for strict CSPs
关于严格 CSP 的基于 LP 的近似性
  • DOI:
    10.1137/1.9781611973082.121
  • 发表时间:
    2011-01-23
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Amit Kumar;R. Manokaran;Madhur Tulsiani;Nisheeth K. Vishnoi
  • 通讯作者:
    Nisheeth K. Vishnoi
Multiplicative Approximations for Polynomial Optimization Over the Unit Sphere
单位球面上多项式优化的乘法近似
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Bhattiprolu;Mrinalkanti Ghosh;V. Guruswami;Euiwoong Lee;Madhur Tulsiani
  • 通讯作者:
    Madhur Tulsiani

Madhur Tulsiani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Madhur Tulsiani', 18)}}的其他基金

AF: Small: Understanding Expansion Phenomena: Graphical, Hypergraphical, Geometric, and Quantum
AF:小:理解膨胀现象:图形、超图形、几何和量子
  • 批准号:
    2326685
  • 财政年份:
    2023
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Standard Grant
AF: Small: Understanding Expansion Phenomena: Graphical, Hypergraphical, Geometric, and Quantum
AF:小:理解膨胀现象:图形、超图形、几何和量子
  • 批准号:
    2326685
  • 财政年份:
    2023
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Standard Grant
CAREER: Understanding Polynomial Structure Analytically and Algorithmically
职业:通过分析和算法理解多项式结构
  • 批准号:
    1254044
  • 财政年份:
    2013
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Continuing Grant

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
  • 批准号:
    10099896
  • 财政年份:
    2024
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Collaborative R&D
Protection of quantum information in small clusters of qubits
保护小量子位簇中的量子信息
  • 批准号:
    EP/Z000572/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Research Grant
Designing, simulating, fabricating, and characterising small-pitch LGAD sensors with precise timing
设计、模拟、制造和表征具有精确定时的小间距 LGAD 传感器
  • 批准号:
    ST/X005194/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Training Grant
Identifying causal pathways in cerebral small vessel disease
确定脑小血管疾病的因果途径
  • 批准号:
    MR/Y014634/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Research Grant
Optimisation of small molecule inhibitors for effective targeting of phospholipase C gamma in T-cell lymphoma
优化小分子抑制剂以有效靶向 T 细胞淋巴瘤中的磷脂酶 C γ
  • 批准号:
    MR/Y503344/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.72万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了