Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics

合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)

基本信息

  • 批准号:
    2329192
  • 负责人:
  • 金额:
    $ 44.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Non-Technical:Electronic integration has proven foundational to modern information society. Specifically, the up-scaling in semiconductor industry is one of the most critical steps towards reduced production cost, enhanced performance, and integration density. In this project, a potential transformative technique for developing next-generation semiconductor computing processor is proposed. By prototyping novel integrated electronic devices based on two-dimensional (2D) semiconductors with atomic thickness, ultrathin microelectronic logic element is studied, leading to not only fundamental physics advancements in low-dimensional materials community, but also major advances in semiconductor technologies synergizing vital research areas of materials, electronic devices, and novel circuity architecture. College students will be trained and involved for workforce upgrade and knowledge dissemination. Workshops, symposiums, and tutorials are planned, as well as technical exchange at international conferences to enhance the impact and findings of this project. Collaborations and technical discussions are also planned with semiconductor companies to foster technological translation workforce alignment.Technical:An interdisciplinary study on the three-dimensional (3D) integration of complementary-field effect transistors (C-FET) made by 2D material is proposed for the ultimate solution for the next-generation computing processors. Despite the recent advancement using multi-dimensional gate control technology, the current material and device architectures still encounter fundamental limitation on integration density and multifunctionality. A groundbreaking paradigm leap synergizing the material- and device- and circuit- level has thus attracted enormous interest from both academia and industry. Three significant breakthroughs will be made: (i) Single-crystalline 2D materials have atomic thickness and self-confine nature, it maintains excellent electrical property even under sub-nanometer scale, securing ultimate scalability. (ii) C-FETs are based on the concept of 3D heterogeneous integration of CMOS devices, allowing aggressive cell scaling to realize compact logic circuity. (iii) C-FET based monolithic 3D integration with image sensors will be achieved to explore the possibility of various integration capability based on the C-FET-based circuits. Four objectives will be implemented to promote the suggested breakthroughs: (1) Using the geometrically confined growth method that has recently proven groundbreaking success, high-quality single-crystal 2D materials can be manufactured at large-scale with high yield. (2) Single-crystalline 2D material-based C-FETs will be fabricated with competitive state-of-the-art performance. (3) Enabled with such C-FETs, circuit design of logic cells can be implemented including a full adder and a full substractor. (4) Ultimately, a novel encoder can be realized leveraging this new type of microprocessor, which is a main component of analog-to-digital converters (ADC). Through this, M3D integration with image sensors will be demonstrated to explore integration possibility of the C-FETs circuits. The next-generation computing processor proposed in this project will provide detailed understanding on how to demonstrate high-quality 2D materials, C-FETs, and C-FET based circuits that are key to maximizing their full potential, ultimate scalability and gate-controllability, for semiconductor technologies and industries. The successful achievement of these objectives will pave a new avenue for the next-generation computing processor that can meet the computational demands in the era of data explosion with less power consumption, leading to a considerable surge of interest in the science and application of 2D semiconductors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术:电子集成已被证明是现代信息社会的基础。具体而言,半导体行业的规模化是降低生产成本、提高性能和集成密度的最关键步骤之一。在该项目中,提出了开发下一代半导体计算处理器的潜在变革技术。通过原型设计基于原子厚度的二维 (2D) 半导体的新型集成电子器件,研究超薄微电子逻辑元件,不仅导致低维材料领域的基础物理进步,而且还促进与重要研究相结合的半导体技术的重大进展材料、电子器件和新颖的电路架构领域。大学生将接受培训并参与劳动力升级和知识传播。计划举办研讨会、研讨会和教程,以及国际会议上的技术交流,以增强该项目的影响和成果。还计划与半导体公司进行合作和技术讨论,以促进技术翻译人员的协调。技术:建议对由 2D 材料制成的互补场效应晶体管 (C-FET) 进行三维 (3D) 集成的跨学科研究下一代计算处理器的终极解决方案。尽管最近使用多维栅极控制技术取得了进展,但当前的材料和器件架构在集成密度和多功能性方面仍然遇到根本限制。因此,材料级、器件级和电路级协同的突破性范式飞跃吸引了学术界和工业界的巨大兴趣。将取得三个重大突破:(i)单晶二维材料具有原子厚度和自限制性质,即使在亚纳米尺度下也能保持优异的电性能,确保最终的可扩展性。 (ii) C-FET 基于 CMOS 器件的 3D 异构集成概念,允许积极的单元缩放以实现紧凑的逻辑电路。 (iii)将实现基于C-FET与图像传感器的单片3D集成,以探索基于C-FET电路的各种集成能力的可能性。为了促进所建议的突破,将实现四个目标:(1)利用最近被证明具有突破性成功的几何受限生长方法,可以大规模、高产量地制造高质量的单晶二维材料。 (2) 基于单晶二维材料的 C-FET 将被制造为具有具有竞争力的最先进性能。 (3)利用这种C-FET,可以实现包括全加器和全减器的逻辑单元的电路设计。 (4) 最终,利用这种新型微处理器可以实现一种新颖的编码器,该微处理器是模数转换器(ADC)的主要组件。通过此,将演示 M3D 与图像传感器的集成,以探索 C-FET 电路的集成可能性。该项目提出的下一代计算处理器将详细了解如何演示高质量 2D 材料、C-FET 和基于 C-FET 的电路,这些电路对于最大限度地发挥其全部潜力、最终可扩展性和栅极可控性至关重要,用于半导体技术和行业。这些目标的成功实现将为下一代计算处理器开辟新的途径,以更低的功耗满足数据爆炸时代的计算需求,从而引发人们对二维半导体科学和应用的兴趣激增该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiangfeng Duan其他文献

High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band
近红外通信频段高增益亚微米光放大器
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Xiaoxia Wang;Xiujuan Zhuang;Sen Yang;Yu Chen;Qinglin Zhang;Xiaoli Zhu;Hong Zhou;Pengfei Guo;Junwu Liang;Yu Huang;Anlian Pan;Xiangfeng Duan
  • 通讯作者:
    Xiangfeng Duan
Van der Waals Integration of Artificial Heterostructures and High-Order Superlattices
人工异质结构和高阶超晶格的范德华积分
  • DOI:
    10.1360/nso/20220034
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Q. Qian;Zhong Wan;Xiangfeng Duan
  • 通讯作者:
    Xiangfeng Duan
Highly-anisotropic optical and electrical properties in layered SnSe
层状 SnSe 具有高度各向异性的光学和电学特性
  • DOI:
    10.1007/s12274-017-1712-2
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Shengxue Yang;Yuan Liu;Minghui Wu;Li-Dong Zhao;Zhaoyang Lin;Hung-chieh Cheng;Yiliu Wang;Chengbao Jiang;Su-Huai Wei;Li Huang;Yu Huang;Xiangfeng Duan
  • 通讯作者:
    Xiangfeng Duan
Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures
一维和二维硫族化物半导体纳米结构的成分调制
  • DOI:
    10.1042/bst0370012
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    46.2
  • 作者:
    Honglai Li;Xiao Wang;Xiaoli Zhu;Xiangfeng Duan;Anlian Pan
  • 通讯作者:
    Anlian Pan
Effect of Ammonia on Preparation of Ammonium Polyphosphate
氨对聚磷酸铵制备的影响
  • DOI:
    10.4028/www.scientific.net/amr.228-229.828
  • 发表时间:
    2011-04-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gousheng Liu;Xiangfeng Duan
  • 通讯作者:
    Xiangfeng Duan

Xiangfeng Duan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiangfeng Duan', 18)}}的其他基金

Charge Transport and Carrier-Phonon Interactions in Soft Lattice Metal Halide Perovskites
软晶格金属卤化物钙钛矿中的电荷传输和载流子-声子相互作用
  • 批准号:
    2324943
  • 财政年份:
    2023
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Standard Grant
Holey Graphene-Supported Single Metal Atoms as Highly Efficient Electrocatalysts
多孔石墨烯支撑的单金属原子作为高效电催化剂
  • 批准号:
    1800580
  • 财政年份:
    2018
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Standard Grant
A New Design of Nanoscale Optical Voltage Sensors from Plasmonic/Nonlinear-Optical Material Core/Shell Nanoparticles
等离子体/非线性光学材料核/壳纳米粒子纳米级光学电压传感器的新设计
  • 批准号:
    1610361
  • 财政年份:
    2016
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Standard Grant
Heterostructures and Superlattices of Two-Dimensional Layered Materials
二维层状材料的异质结构和超晶格
  • 批准号:
    1508144
  • 财政年份:
    2015
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Standard Grant
CAREER: Graphene Nanomesh: Band Gap Engineering in Single Layers of Carbon
职业:石墨烯纳米网:单层碳的带隙工程
  • 批准号:
    0956171
  • 财政年份:
    2010
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Continuing Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 44.63万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了