RII Track-4:@NSF: Surrogate-based Optimal Atmospheric Entry Guidance using High-fidelity Simulation Data

RII Track-4:@NSF:使用高保真模拟数据的基于替代的最佳大气进入指导

基本信息

  • 批准号:
    2327379
  • 负责人:
  • 金额:
    $ 25.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-02-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) project would provide a fellowship to an Assistant professor and training for a graduate student at Iowa State University. This work would be conducted in collaboration with researchers at the NASA Ames Research Center. For planetary exploration, spacecraft must pass through atmospheric entry and powered descent stages to safely decelerate and accurately land. Dating back to the Apollo mission era, Atmospheric Entry Guidance (AEG) controls the atmospheric drag of a spacecraft to achieve these objectives. Researchers have been working on optimal AEG to maximize fuel savings during the subsequent powered descent by terminating the entry phase with a minimum velocity trajectory. These optimal AEG methods have relied on ideal dynamic models with uncertain differences from the actual entry environment. Therefore, more advanced and complex computational modeling and simulation technologies have been developed and utilized to minimize these discrepancies. Despite the advantages of Monte Carlo simulation, the increased complexity makes it an impractical method to quantify modeling uncertainty. In addition, the entry vehicle's onboard computer is not powerful enough to run optimal AEG with a complex model. To address these limitations, this research aims to create a surrogate-based optimal guidance system, trained on high-fidelity data from complex simulations. The proposed guidance method enhances safety and efficiency in space exploration by reducing computational burden, saving spacecraft fuel, and enabling modeling uncertainty quantification.The need for a new optimal AEG that reduces computational costs and enables modeling uncertainty quantification is evident. To satisfy this need, a surrogate-based AEG system, trained using high-fidelity simulation data from advanced Entry System Modeling (ESM), will be developed. For the development, preparing precise and computationally efficient training data that effectively encapsulates the core of atmospheric entry is crucial. The proposed research will identify the dominant variables influencing AEG performance and generate the required training data using NASA's entry simulation tool. Various surrogate models for training, such as Gaussian Process Regression and Generalized Additive Model, will also be explored. The ultimate objective is establishing an onboard optimal AEG framework using a trained surrogate. This framework can incorporate various feedback control algorithms to aid in planetary entry missions on Earth, Mars, Venus, and Titan. While prior research has focused on applying surrogates for subcomponent modeling, such as air density and fluid and aerothermal dynamics, this approach targets application to optimal guidance and will accelerate calculation speed for implementation on embedded platforms. To reduce computations and training time, this research proposes a simplification method for the entry guidance profile that can also reduce the dimension of the training data. The success of this project will pave the way for extending the proposed surrogate-based technique to other space applications, such as spacecraft orbit or attitude guidance, and contribute significantly to extending the traditional space Guidance, Navigation, and Control (GNC) approach to data-based learning techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究基础设施改进 Track-4 EPSCoR 研究员 (RII Track-4) 项目将为爱荷华州立大学的一名助理教授提供奖学金,并为一名研究生提供培训。这项工作将与美国宇航局艾姆斯研究中心的研究人员合作进行。对于行星探索,航天器必须经过大气层进入和动力下降阶段才能安全减速并准确着陆。追溯到阿波罗任务时代,大气进入制导 (AEG) 控制航天器的大气阻力以实现这些目标。研究人员一直在研究最佳 AEG,通过以最小速度轨迹终止进入阶段,在随后的动力下降过程中最大限度地节省燃料。这些最佳 AEG 方法依赖于与实际进入环境存在不确定差异的理想动态模型。因此,已经开发和利用了更先进和复杂的计算建模和模拟技术来最小化这些差异。尽管蒙特卡罗模拟具有优势,但复杂性的增加使其成为量化建模不确定性的不切实际的方法。此外,入门级车辆的车载计算机功能不够强大,无法对复杂模型运行最佳 AEG。为了解决这些限制,本研究旨在创建一个基于替代的最佳制导系统,并根据复杂模拟的高保真数据进行训练。所提出的制导方法通过减少计算负担、节省航天器燃料和实现不确定性量化建模来提高空间探索的安全性和效率。显然,需要一种新的最佳 AEG 来降低计算成本并实现不确定性量化建模。为了满足这一需求,将开发基于代理的 AEG 系统,并使用来自高级进入系统建模 (ESM) 的高保真模拟数据进行训练。对于开发来说,准备精确且计算高效的训练数据来有效封装大气进入的核心至关重要。拟议的研究将确定影响 AEG 性能的主要变量,并使用 NASA 的进入模拟工具生成所需的训练数据。还将探索用于训练的各种替代模型,例如高斯过程回归和广义加性模型。最终目标是使用训练有素的代理建立机载最佳 AEG 框架。该框架可以结合各种反馈控制算法,以帮助执行地球、火星、金星和泰坦上的行星进入任务。虽然之前的研究重点是应用子组件建模的替代方法,例如空气密度、流体和气动热动力学,但这种方法的目标是应用到最佳指导,并将加快嵌入式平台上实施的计算速度。为了减少计算量和训练时间,本研究提出了一种入口引导轮廓的简化方法,该方法也可以减少训练数据的维度。该项目的成功将为将所提议的基于代理的技术扩展到其他空间应用(例如航天器轨道或姿态引导)铺平道路,并为将传统的空间引导、导航和控制(GNC)方法扩展到数据方面做出重大贡献该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dae Young Lee其他文献

Whole-genome, transcriptome, and methylome analyses provide insights into the evolution of platycoside biosynthesis in Platycodon grandiflorus, a medicinal plant
全基因组、转录组和甲基化组分析为了解药用植物桔梗苷生物合成的进化提供了见解
  • DOI:
    10.1038/s41438-020-0329-x
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Jungeun Kim;Sang;Sin;Tae;Yi Lee;O. Kim;Oksung Chung;Jungho Lee;Jae;Soo;Keunpyo Lee;B. Ahn;Dong Jin Lee;Seung;In;Y. Um;Dae Young Lee;Geum;C. Hong;J. Bhak;Chang
  • 通讯作者:
    Chang
COMPARISON OF INTRAOPERATIVE COMPLICATIONS OF PHACOEMULSIFICATION BETWEEN SEQUENTIAL AND COMBINED PROCEDURES OF PARS PLANA VITRECTOMY AND CATARACT SURGERY
睫状体平坦部玻璃体切除术和白内障手术序贯手术和联合手术的白内障超声乳化术术中并发症的比较
  • DOI:
    10.1097/iae.0b013e3182561fab
  • 发表时间:
    2012-11-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Y. Lee;K. Kim;Kwang Hoon Shin;Dae Heon Han;Dae Young Lee;D. Nam
  • 通讯作者:
    D. Nam
Exploring Li-CO2 Batteries with Electrospun PAN-Derived Carbon Nanofibers and Li1.4Al0.4Ti1.6(PO4)3 Solid-State Electrolyte
使用静电纺丝 PAN 衍生碳纳米纤维和 Li1.4Al0.4Ti1.6(PO4)3 固态电解质探索 Li-CO2 电池
  • DOI:
    10.1016/j.jallcom.2023.172559
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    D. Na;Roopa Kishore Kampara;Dohyeon Yu;Baeksang Yoon;Dae Young Lee;Inseok Seo
  • 通讯作者:
    Inseok Seo
Pharmacokinetics of the novel 5-HT4 receptor agonist, DA-6886, in dogs
新型 5-HT4 受体激动剂 DA-6886 在​​狗体内的药代动力学
  • DOI:
    10.1080/00498254.2023.2262013
  • 发表时间:
    2023-05-04
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Dae Young Lee;Hee Eun Kang
  • 通讯作者:
    Hee Eun Kang
Wireless wafer-level testing of integrated circuits via capacitively-coupled channels
通过电容耦合通道对集成电路进行无线晶圆级测试

Dae Young Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基础学科拔尖学生发展及其影响机制的追踪研究
  • 批准号:
    72304231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向小样本教育场景的学生知识追踪方法研究
  • 批准号:
    62307006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多精度目标追踪的多模态统一模型
  • 批准号:
    62302328
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
前额叶及其脑网络在儿童共情发展中的作用:计算建模与追踪研究
  • 批准号:
    32371103
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
稀疏优化问题中的匹配追踪类和阈值类算法研究
  • 批准号:
    12301393
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
  • 批准号:
    2327266
  • 财政年份:
    2024
  • 资助金额:
    $ 25.65万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Bio-inspired Solutions to Prevent Soil Erosion in Farmland and Scouring in Fluvial Regions
RII Track-4:NSF:防止农田水土流失和河流地区冲刷的仿生解决方案
  • 批准号:
    2327384
  • 财政年份:
    2024
  • 资助金额:
    $ 25.65万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Spatiotemporal Modeling of Lithium-ion Battery Packs for Electric Vehicle Battery Management Systems
RII Track-4:NSF:电动汽车电池管理系统锂离子电池组的时空建模
  • 批准号:
    2327409
  • 财政年份:
    2024
  • 资助金额:
    $ 25.65万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 25.65万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Advancing High Density and High Operation Temperature Traction Inverter by Gallium Oxide Packaged Power Module
RII Track-4:NSF:通过氧化镓封装功率模块推进高密度和高工作温度牵引逆变器
  • 批准号:
    2327474
  • 财政年份:
    2024
  • 资助金额:
    $ 25.65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了