RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications

RI:小型:最优传输生成对抗网络:理论、算法和应用

基本信息

  • 批准号:
    2327113
  • 负责人:
  • 金额:
    $ 59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

With the rapid advancements of sensing technologies, unlabeled high dimensional complex interconnected data have become ubiquitous across various application fields, spanning from science and engineering to social and behavioral sciences. Generative models have emerged as a highly effective approach for modeling and representation learning from such unlabeled data. As a result, they have taken a central role in current research of artificial intelligence (AI) and machine learning, expanding frontiers of AI applications. One of the most prominent generative models is the Generative Adversarial Network (GAN), which is a deep neural network-based model designed to learn unknown data distributions. Since its introduction, GAN models have proven to be exceptionally efficient and effective, particularly in generating high quality samples. However, there are some significant challenges in using GANs, with training difficulties being a notable one. The objective of this project is to advance theory and training algorithms for GANs and to demonstrate their effectiveness through two applications: one arising in a human-robot collaborative welding system and the other in imbalanced data sampled from skewed class distributions. By tackling these challenges and studying real-world applications, this project aims to contribute to the broader utilization of generative models across diverse domains.While GANs have enjoyed tremendous success in many real-world applications, successful training of GANs remains elusive. Instability, mode collapse, and non-convergence of training algorithms are the main issues and they can be attributed to the current models and the theory that rely on exact solutions of a minimax optimization, which adapt poorly when various approximations are introduced in implementations. In this project, the investigators will systematically study the challenges arising in various stages of approximations by developing a new theoretical framework that is more amenable to approximations and, consequently, new algorithms that have better convergence property and stability. They will also develop two novel optimal transport based GAN models for learning discrete data distributions and for graph structured data respectively. They will test their capabilities in two applications that cannot be adequately solved through the existing GAN models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着传感技术的快速进步,未标记的高维复杂互连数据已在从科学和工程到社会和行为科学的各个应用领域中变得无处不在。生成模型已成为从此类未标记数据中进行建模和表示学习的高效方法。因此,他们在当前人工智能(AI)和机器学习的研究中发挥了核心作用,拓展了人工智能应用的前沿。最著名的生成模型之一是生成对抗网络(GAN),它是一种基于深度神经网络的模型,旨在学习未知的数据分布。自推出以来,GAN 模型已被证明非常高效和有效,特别是在生成高质量样本方面。然而,使用 GAN 存在一些重大挑战,其中训练困难是一个值得注意的挑战。该项目的目标是推进 GAN 的理论和训练算法,并通过两个应用来证明其有效性:一个是在人机协作焊接系统中出现,另一个是从倾斜的类分布中采样的不平衡数据中。通过应对这些挑战并研究现实世界的应用,该项目旨在为跨不同领域更广泛地利用生成模型做出贡献。虽然 GAN 在许多现实世界的应用中取得了巨大的成功,但 GAN 的成功训练仍然难以实现。训练算法的不稳定、模式崩溃和不收敛是主要问题,它们可以归因于当前的模型和理论依赖于极小极大优化的精确解,当在实现中引入各种近似时,它们的适应能力很差。在该项目中,研究人员将通过开发更适合近似的新理论框架,从而系统地研究近似各个阶段出现的挑战,从而开发具有更好收敛性和稳定性的新算法。他们还将开发两种新颖的基于最优传输的 GAN 模型,分别用于学习离散数据分布和图结构数据。他们将在两个无法通过现有 GAN 模型充分解决的应用中测试自己的能力。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qiang Ye其他文献

IC Solder Joint Inspection Based on an Adaptive-Template Method
基于自适应模板方法的 IC 焊点检测
SACK TCP resilience
SACK TCP 弹性
ColSLAM: A Versatile Collaborative SLAM System for Mobile Phones Using Point-Line Features and Map Caching
ColSLAM:使用点线特征和地图缓存的手机多功能协作 SLAM 系统
Reinforcement Learning Based Offloading for Realtime Applications in Mobile Edge Computing
移动边缘计算中实时应用程序基于强化学习的卸载
Fermenting Distiller’s Grains by the Domesticated Microbial Consortium To Release Ferulic Acid
通过驯化微生物群发酵酒糟以释放阿魏酸
  • DOI:
    10.1021/acs.jafc.3c08067
  • 发表时间:
    2024-04-10
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Yao Zhang;Qiang Ye;Bo Liu;Zhiping Feng;Xian Zhang;Mingyou Luo;Lijuan Yang
  • 通讯作者:
    Lijuan Yang

Qiang Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qiang Ye', 18)}}的其他基金

Robust Preconditioned Gradient Descent Algorithms for Deep Learning
用于深度学习的鲁棒预条件梯度下降算法
  • 批准号:
    2208314
  • 财政年份:
    2022
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
CDS&E: Efficient and Robust Recurrent Neural Networks
CDS
  • 批准号:
    1821144
  • 财政年份:
    2018
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
Accurate Preconditioing for Computing Eigenvalues of Large and Extremely Ill-conditioned Matrices
用于计算大型和极病态矩阵特征值的精确预处理
  • 批准号:
    1620082
  • 财政年份:
    2016
  • 资助金额:
    $ 59万
  • 项目类别:
    Continuing Grant
Accurate and Efficient Algorithms for Computing Exponentials of Large Matrices with Applications
准确高效的大型矩阵指数计算算法及其应用
  • 批准号:
    1318633
  • 财政年份:
    2013
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E-MSS: Robust Algorithms for Interpolation and Extrapolation in Manifold Learning
合作研究:CDS
  • 批准号:
    1317424
  • 财政年份:
    2013
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
High Relative Accuracy Iterative Algorithms for Large Scale Matrix Eigenvalue Problems with Applications
大规模矩阵特征值问题的高相对精度迭代算法及其应用
  • 批准号:
    0915062
  • 财政年份:
    2009
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
Computing Interior Eigenvalues of Large Matrices by Preconditioned Krylov Subspace Methods
用预处理 Krylov 子空间方法计算大矩阵的内部特征值
  • 批准号:
    0411502
  • 财政年份:
    2004
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
Preconditioned Krylov Subspace Algorithms for Computing Eigenvalues of Large Matrices
用于计算大矩阵特征值的预处理 Krylov 子空间算法
  • 批准号:
    0098133
  • 财政年份:
    2001
  • 资助金额:
    $ 59万
  • 项目类别:
    Continuing Grant

相似国自然基金

小分子代谢物Catechin与TRPV1相互作用激活外周感觉神经元介导尿毒症瘙痒的机制研究
  • 批准号:
    82371229
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DHEA抑制小胶质细胞Fis1乳酸化修饰减轻POCD的机制
  • 批准号:
    82301369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SETDB1调控小胶质细胞功能及参与阿尔茨海默病发病机制的研究
  • 批准号:
    82371419
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PTBP1驱动H4K12la/BRD4/HIF1α复合物-PKM2正反馈环路促进非小细胞肺癌糖代谢重编程的机制研究及治疗方案探索
  • 批准号:
    82303616
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RI: Small: Collaborative Research: Evolutionary Approach to Optimal Morphology and Control of Transformable Soft Robots
RI:小型:协作研究:可变形软机器人的最佳形态和控制的进化方法
  • 批准号:
    2325491
  • 财政年份:
    2023
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Evolutionary Approach to Optimal Morphology and Control of Transformable Soft Robots
RI:小型:协作研究:可变形软机器人的最佳形态和控制的进化方法
  • 批准号:
    2006616
  • 财政年份:
    2020
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
RI: Small: Towards Optimal and Adaptive Reinforcement Learning with Offline Data and Limited Adaptivity
RI:小型:利用离线数据和有限的适应性实现最优和自适应强化学习
  • 批准号:
    2007117
  • 财政年份:
    2020
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Evolutionary Approach to Optimal Morphology of Transformable Soft Robots
RI:小型:协作研究:可变形软机器人最佳形态的进化方法
  • 批准号:
    2008413
  • 财政年份:
    2020
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Evolutionary Approach to Optimal Morphology and Control of Transformable Soft Robots
RI:小型:协作研究:可变形软机器人的最佳形态和控制的进化方法
  • 批准号:
    2008797
  • 财政年份:
    2020
  • 资助金额:
    $ 59万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了