Collaborative Research: CDS&E-MSS: Robust Algorithms for Interpolation and Extrapolation in Manifold Learning

合作研究:CDS

基本信息

  • 批准号:
    1317424
  • 负责人:
  • 金额:
    $ 13.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

The objective of this proposal is to develop robust algorithms for reconstructing or synthesizing highly structured high-dimensional data based on a low-dimensional representation learned from a training dataset, i.e., the interpolation and extrapolation problems in manifold learning. The project will address the elusive issue of computing a usually not well-defined low-dimensional parametrization in the setting of various interpolation and extrapolation problems for manifold learning, emphasizing the notion of physically meaningful paramterizations. It will develop innovative computational methodology for flexibly learning a low-dimensional parametrization together with other physically important variables in the context of both unsupervised and semi-supervised learning and especially active learning settings, for learning and synthesis of dynamic data, and for manifold extrapolation based on transfer learning. Included in the project is a development of a publicly available software package which will disseminate the research results and promote applications of nonlinear dimension reduction methodology to real-world problems.The discoveries from this proposed research are expected to impact a wide range of areas of applications. Computing compact representation of high-dimensional data represents a very challenging statistical learning problem, and manifold learning has become a very active research field aiming at discovering hidden structures from the statistical and geometric regularity inherent in many high-dimensional data. Reconstruction and synthesis of high-dimensional data in the context of interpolation and extrapolation will have significant applications in image and video processing, computer vision, video surveillance for homeland security, computational biology, and scientific visualization. The proposed theoretical tools and computational methods have the promise of significantly expanding the applicability and functionality of existing and new manifold learning methods and thus advancing the state of the art in nonlinear dimension reduction research. The proposed research lies at the interface between applied mathematics, computational science, and machine learning applications and provides an ideal setting for research cross-fertilization and collaboration as well as training of graduate students in interdisciplinary research.
该提案的目标是开发鲁棒的算法,用于基于从训练数据集中学习的低维表示来重建或合成高度结构化的高维数据,即流形学习中的插值和外推问题。该项目将解决在流形学习的各种插值和外推问题的设置中计算通常不明确定义的低维参数化的难以捉摸的问题,强调物理上有意义的参数化的概念。它将开发创新的计算方法,用于在无监督和半监督学习,特别是主动学习环境中灵活地学习低维参数化以及其他物理上重要的变量,用于学习和合成动态数据,以及基于流形外推法关于迁移学习。该项目包括开发一个公开可用的软件包,该软件包将传播研究成果并促进非线性降维方法在现实世界问题中的应用。这项研究的发现预计将影响广泛的应用领域。计算高维数据的紧凑表示是一个非常具有挑战性的统计学习问题,流形学习已成为一个非常活跃的研究领域,旨在从许多高维数据固有的统计和几何规律中发现隐藏的结构。在内插和外推的背景下重建和合成高维数据将在图像和视频处理、计算机视觉、国土安全视频监控、计算生物学和科学可视化方面具有重要的应用。所提出的理论工具和计算方法有望显着扩展现有和新的流形学习方法的适用性和功能,从而推进非线性降维研究的最新技术。拟议的研究位于应用数学、计算科学和机器学习应用之间的接口,为研究交叉和协作以及跨学科研究研究生的培训提供了理想的环境。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qiang Ye其他文献

IC Solder Joint Inspection Based on an Adaptive-Template Method
基于自适应模板方法的 IC 焊点检测
SACK TCP resilience
SACK TCP 弹性
ColSLAM: A Versatile Collaborative SLAM System for Mobile Phones Using Point-Line Features and Map Caching
ColSLAM:使用点线特征和地图缓存的手机多功能协作 SLAM 系统
Reinforcement Learning Based Offloading for Realtime Applications in Mobile Edge Computing
移动边缘计算中实时应用程序基于强化学习的卸载
Fermenting Distiller’s Grains by the Domesticated Microbial Consortium To Release Ferulic Acid
通过驯化微生物群发酵酒糟以释放阿魏酸
  • DOI:
    10.1021/acs.jafc.3c08067
  • 发表时间:
    2024-04-10
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Yao Zhang;Qiang Ye;Bo Liu;Zhiping Feng;Xian Zhang;Mingyou Luo;Lijuan Yang
  • 通讯作者:
    Lijuan Yang

Qiang Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qiang Ye', 18)}}的其他基金

RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications
RI:小型:最优传输生成对抗网络:理论、算法和应用
  • 批准号:
    2327113
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications
RI:小型:最优传输生成对抗网络:理论、算法和应用
  • 批准号:
    2327113
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
Robust Preconditioned Gradient Descent Algorithms for Deep Learning
用于深度学习的鲁棒预条件梯度下降算法
  • 批准号:
    2208314
  • 财政年份:
    2022
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
CDS&E: Efficient and Robust Recurrent Neural Networks
CDS
  • 批准号:
    1821144
  • 财政年份:
    2018
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Accurate Preconditioing for Computing Eigenvalues of Large and Extremely Ill-conditioned Matrices
用于计算大型和极病态矩阵特征值的精确预处理
  • 批准号:
    1620082
  • 财政年份:
    2016
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
Accurate and Efficient Algorithms for Computing Exponentials of Large Matrices with Applications
准确高效的大型矩阵指数计算算法及其应用
  • 批准号:
    1318633
  • 财政年份:
    2013
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
High Relative Accuracy Iterative Algorithms for Large Scale Matrix Eigenvalue Problems with Applications
大规模矩阵特征值问题的高相对精度迭代算法及其应用
  • 批准号:
    0915062
  • 财政年份:
    2009
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Computing Interior Eigenvalues of Large Matrices by Preconditioned Krylov Subspace Methods
用预处理 Krylov 子空间方法计算大矩阵的内部特征值
  • 批准号:
    0411502
  • 财政年份:
    2004
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Preconditioned Krylov Subspace Algorithms for Computing Eigenvalues of Large Matrices
用于计算大矩阵特征值的预处理 Krylov 子空间算法
  • 批准号:
    0098133
  • 财政年份:
    2001
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347422
  • 财政年份:
    2024
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了