CRII: OAC: A Hybrid Finite Element and Molecular Dynamics Simulation Approach for Modeling Nanoparticle Transport in Human Vasculature

CRII:OAC:一种混合有限元和分子动力学模拟方法,用于模拟人体脉管系统中纳米颗粒的传输

基本信息

  • 批准号:
    2326802
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-15 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Through nanomedicine significant methods are emerging to deliver drug molecules directly to diseased areas for cancer treatment. Targeted drug delivery is one of the most promising approaches which relies on nanoparticles (NPs) that carry and release drugs. The therapeutic efficacy of NP-based drug carriers is determined by the proper concentration of drug molecules at the lesion site. NPs need to be delivered directly to the diseased tissues while minimizing their uptake by other tissues, thereby reducing the potential harm to healthy tissue. Therefore, the design of these NPs and hence the efficacy of the targeted drug delivery could be significantly improved by understanding how the drugs carried by NPs are transported and dispersed in human body. This project proposes a set of computational tools to model and investigate the transport and dispersion of NPs in human vasculature. This, in turn, can provide better imaging sensitivity, therapeutic efficacy and lower toxicity of NP-based drug carriers. The multidisciplinary nature of the project also brings together concepts from biology, engineering and computer science to educate the next generation of computational biologists, scientists and engineers. This research, thus, aligns with the NSF mission to promote the progress of science and to advance the national health, prosperity and welfare. The technical objective of this project is to create a hybrid finite element and molecular dynamics computational approach for modeling NP transport and adhesion in human vasculature. The realistic geometry of vascular network and fluid dynamics of blood flow are accurately captured through the finite element model. The microscopic interactions between NPs and red blood cells within blood flow and adhesion of NPs to vessel wall are resolved through the molecular dynamics simulation. A robust and efficient coupling interface is built to couple the finite element and molecular dynamics solvers. Specifically, this project aims to 1) create a multiscale and multiphysics computational model for predicting the vascular dynamics of NPs under the influence of realistic geometrical and physiochemical features of human vasculature; 2) craft an interface coupling technique that enhances computational accuracy and predictability by coupling the finite element and molecular dynamics solvers; 3) build testsuits for multiscale and multiphysics simulations for coupled solution error and convergence analysis; and 4) advance the current cyberinfrastructure to accelerate the material design process and enrich the cyber-enabled materials design community. Such a computational method can be used to explore how the vascular dynamics of NPs will be affected by their size, shape, surface and stiffness properties, as well as complex geometry of human vasculature. The simulation results can further guide experimentalists to design NP-mediated drug delivery platforms that optimally accumulate within diseased tissue to provide better imaging sensitivity, therapeutic efficacy and lower toxicity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过纳米医学,正在出现将药物分子直接输送到患病区域进行癌症治疗的重要方法。 靶向药物递送是最有前途的方法之一,它依赖于携带和释放药物的纳米颗粒(NP)。 纳米粒子药物载体的治疗效果取决于病灶部位药物分子的适当浓度。 纳米颗粒需要直接输送到患病组织,同时最大限度地减少其他组织对纳米颗粒的吸收,从而减少对健康组织的潜在危害。 因此,通过了解纳米粒子携带的药物如何在人体内运输和分散,可以显着提高这些纳米粒子的设计以及靶向药物递送的功效。 该项目提出了一套计算工具来模拟和研究纳米颗粒在人体脉管系统中的运输和分散。 这反过来又可以提供更好的成像灵敏度、治疗效果和更低的基于纳米粒子的药物载体的毒性。 该项目的多学科性质还汇集了生物学、工程学和计算机科学的概念,以教育下一代计算生物学家、科学家和工程师。因此,这项研究符合 NSF 促进科学进步和促进国民健康、繁荣和福利的使命。该项目的技术目标是创建一种混合有限元和分子动力学计算方法,用于模拟人体脉管系统中纳米颗粒的运输和粘附。 通过有限元模型准确捕捉血管网络的真实几何形状和血流的流体动力学。 通过分子动力学模拟解决了血流中纳米粒子与红细胞之间的微观相互作用以及纳米粒子与血管壁的粘附。 建立了强大且高效的耦合接口来耦合有限元和分子动力学求解器。 具体来说,该项目的目标是:1)创建一个多尺度和多物理计算模型,用于预测在人体脉管系统的实际几何和物理化学特征影响下纳米颗粒的血管动力学; 2) 设计一种界面耦合技术,通过耦合有限元和分子动力学求解器来提高计算精度和可预测性; 3) 构建多尺度和多物理场仿真测试套件,以进行耦合解误差和收敛分析; 4)推进当前的网络基础设施,以加速材料设计过程并丰富网络支持的材料设计社区。 这种计算方法可用于探索纳米粒子的血管动力学如何受到其尺寸、形状、表面和刚度特性以及人体脉管系统的复杂几何形状的影响。 模拟结果可以进一步指导实验人员设计纳米粒子介导的药物递送平台,使其在病变组织内最佳积聚,以提供更好的成像灵敏度、治疗效果和更低的毒性。该奖项反映了 NSF 的法定使命,并通过使用 NSF 的评估被认为值得支持。基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational investigation on lipid bilayer disruption induced by amphiphilic Janus nanoparticles: combined effect of Janus balance and charged lipid concentration
两亲性 Janus 纳米粒子诱导的脂质双层破坏的计算研究:Janus 平衡和带电脂质浓度的综合影响
  • DOI:
    10.1039/d3nr00403a
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Nguyen, Danh;Wu, James;Corrigan, Patrick;Li, Ying
  • 通讯作者:
    Li, Ying
Machine learning-based prediction for single-cell mechanics
基于机器学习的单细胞力学预测
  • DOI:
    10.1016/j.mechmat.2023.104631
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Danh;Lei Tao;Huilin Ye;Ying Li
  • 通讯作者:
    Ying Li
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ying Li其他文献

Cytotoxicity of six copper-bearing intrauterine devices on Chinese hamster ovary cells: the influence of frame, shape and copper surface area
六种含铜宫内节育器对中国仓鼠卵巢细胞的细胞毒性——框架、形状和铜表面积的影响
  • DOI:
    10.7669/j.issn.1001-7844.2015.03.0160
  • 发表时间:
    2015-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tong Chen;Ying Li;Wenli Zhang;Weisai Zhou;Shuangshuang Zhang;Jianping Liu
  • 通讯作者:
    Jianping Liu
Evaluation of the Thermal Properties of Kermel and PBO Fibres
Kermel 和 PBO 纤维的热性能评估
Effect of magnetic field on phase morphology transformation of MnO2 nanostructures in a hydrothermal process
水热过程中磁场对MnO2纳米结构相形变的影响
  • DOI:
    10.1002/pssc.201084200
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mingyuan Zhu;Ye;Ying Li;H. Jin;Zhenzhen Zhu
  • 通讯作者:
    Zhenzhen Zhu
Multi-modal diffeomorphic demons registration based on mutual information
基于互信息的多模态微分同胚配准
Variation of optimum yttrium doping concentrations of perovskite type proton conductors BaZr1−xYxO3−α (0≤x≤0.3) with temperature
钙钛矿型质子导体BaZr1−xYxO3−α (0≤x≤0.3)最佳钇掺杂浓度随温度的变化
  • DOI:
    10.1016/s1002-0721(13)60023-x
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Yu;Ying Li;Wenzhuo Deng;Wenlong Huang;C. Wang
  • 通讯作者:
    C. Wang

Ying Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ying Li', 18)}}的其他基金

CLIMA/Collaborative Research: Discovery of Covalent Adaptable Networks for Sustainable Manufacturing and Recycling of Wind Turbine Blades
CLIMA/合作研究:发现用于风力涡轮机叶片可持续制造和回收的共价适应性网络
  • 批准号:
    2332276
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2313746
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
PFI-TT: Scalable Manufacturing of Novel Catalysts for Converting CO2 to Valuable Products
PFI-TT:可规模化生产将二氧化碳转化为有价值产品的新型催化剂
  • 批准号:
    2326072
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2205007
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Unraveling Mechanics of High Strength and Low Stiffness in Polymer Nanocomposites through Integrated Molecular Modeling and Nanomechanical Experiments
通过集成分子建模和纳米力学实验揭示聚合物纳米复合材料的高强度和低刚度力学
  • 批准号:
    2316200
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
  • 批准号:
    2153894
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
  • 批准号:
    2313754
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CAREER: Machine Learned Coarse-grained Modeling for Mechanics of Thermoplastic Elastomers
职业:热塑性弹性体力学的机器学习粗粒度建模
  • 批准号:
    2323108
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Interfacial Self-healing of Nanocomposite Hydrogels
合作研究:纳米复合水凝胶的界面自修复
  • 批准号:
    2314424
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2205007
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
  • 批准号:
    21603131
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
  • 批准号:
    21242013
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
  • 批准号:
    2402542
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403088
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403090
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了