Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
基本信息
- 批准号:2325463
- 负责人:
- 金额:$ 32.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYSodium-ion chemistry provides a significant alternative to the current lithium-ion technology for rechargeable batteries with its foremost advantage of natural abundance, low cost, and much wider choices of material selection, therefore providing a critical strategy to reduce the risk of the low reserve of scarce elements in the US. However, compared to lithium reactions, sodium chemistry poses a considerable mechanical deformation to the electrodes and creates more stress and degradation that compromise battery performance. This project, supported by the Ceramics Program within the Division of Materials Research, seeks to create a fundamental understanding of battery degradation via a close integration of novel experiments, data analysis, and modeling approaches. Such knowledge is crucial to elucidating the aging mechanisms of sodium-based batteries, which synergistically contribute to the development of materials of enhanced reliability for the same applications. The multifaceted collaboration between Purdue and Virginia Tech provides unique training opportunities for developing workforce for STEM related careers, with particular relevance to meeting the demand of the clean energy industries, which is expected to grow significantly in the coming decades. The research also provides a platform to continue the recruitment and engagement of the underrepresented groups and to educate future scientists on convergent research skills and entrepreneurial training.TECHNICAL SUMMARYThe project aims to achieve a holistic understanding of chemomechanics in phase-changing electroceramic electrodes through mechanistic studies of defects-charge coupling at the lattice scale, phase-stress coupling in single particles, and statistics of the particle network in the composite electrodes of sodium-ion batteries. The research is based on the hypothesis that: (i) the breakdown of the local structural symmetry not only induces lattice distortion and stress gradient at the nanoscale but also impacts the charge distribution in the lattice, (ii) the stochastic nature of material defects is coupled with the phase inhomogeneity in the single particles that gives rise to a stress/strain profile largely deviated from the conventional core-shell pattern; and (iii) in composite electrodes, the charge heterogeneity, mechanical damage, and electrochemical activities co-evolve, resulting in a dynamic ionic/electronic network in the cell. Following the hypothesis, the project includes the following research tasks. (i) Quantify the defect characteristics and map the defects-charging-composition at the nanoscale using controlled synthesis, synchrotron analytical techniques, and computational modeling. (ii) Understand the phase-stress coupling in the single electroceramic particles using the designs of grain engineering and surface coating. (iii) Identify the characteristic metrics of particle network in composite electrodes using machine learning, understand the dynamic evolution of particle network under operating conditions, and interpret the impact of mechanical degradation on battery performance. Overall, the research spans the basic understanding from the lattice scale up to the composite electrode and lays a foundation of mechanistic understanding of chemomechanical degradation in energy storage materiaThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要钠离子化学为当前可充电电池的锂离子技术提供了重要的替代方案,其最大的优点是天然丰富、成本低廉和材料选择范围更广,因此提供了降低风险的关键策略美国稀缺元素储量较低。然而,与锂反应相比,钠化学会对电极造成相当大的机械变形,并产生更多的应力和退化,从而损害电池性能。该项目由材料研究部陶瓷项目支持,旨在通过新颖的实验、数据分析和建模方法的紧密结合,建立对电池退化的基本理解。这些知识对于阐明钠基电池的老化机制至关重要,这有助于开发适用于相同应用的可靠性更高的材料。普渡大学和弗吉尼亚理工大学之间的多方面合作为培养 STEM 相关职业的劳动力提供了独特的培训机会,特别是满足了清洁能源行业的需求,预计清洁能源行业将在未来几十年内大幅增长。该研究还提供了一个平台,以继续招募和参与代表性不足的群体,并教育未来的科学家融合研究技能和创业培训。技术摘要该项目旨在通过机械研究来全面了解相变电陶瓷电极的化学力学。晶格尺度的缺陷-电荷耦合、单颗粒中的相-应力耦合以及钠离子电池复合电极中颗粒网络的统计。该研究基于以下假设:(i)局部结构对称性的破坏不仅会引起纳米尺度的晶格畸变和应力梯度,还会影响晶格中的电荷分布,(ii)材料缺陷的随机性质是再加上单个颗粒中的相不均匀性,导致应力/应变分布很大程度上偏离传统的核-壳模式; (iii) 在复合电极中,电荷异质性、机械损伤和电化学活动共同演化,从而在电池中形成动态的离子/电子网络。根据假设,该项目包括以下研究任务。 (i) 使用受控合成、同步加速器分析技术和计算建模量化缺陷特征并绘制纳米尺度的缺陷充电成分图。 (ii) 利用晶粒工程和表面涂层的设计了解单个电陶瓷颗粒中的相应力耦合。 (iii)利用机器学习识别复合电极中颗粒网络的特征指标,了解工作条件下颗粒网络的动态演化,并解释机械退化对电池性能的影响。总体而言,该研究跨越了从晶格尺度到复合电极的基本理解,为储能材料化学机械降解的机理理解奠定了基础。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势进行评估,被认为值得支持以及更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kejie Zhao其他文献
Screening virulence factors of porcine extraintestinal pathogenic Escherichia coli (an emerging pathotype) required for optimal growth in swine blood.
筛选猪血液中最佳生长所需的猪肠外致病性大肠杆菌(一种新兴致病型)的毒力因子。
- DOI:
10.1111/tbed.13848 - 发表时间:
2020-09-24 - 期刊:
- 影响因子:0
- 作者:
Jiale Ma;Zhixin Cheng;Qiankun Bai;Kejie Zhao;Z. Pan;Huochun Yao - 通讯作者:
Huochun Yao
A comparison of AA2024 and AA7150 subjected to ultrasonic shot peening: Microstructure, surface segregation and corrosion
AA2024和AA7150经超声波喷丸处理的比较:显微组织、表面偏析和腐蚀
- DOI:
10.1016/j.surfcoat.2018.01.072 - 发表时间:
2018 - 期刊:
- 影响因子:5.4
- 作者:
Qingqing Sun;Xingtao Liu;Qingyou Han;Jie Li;Rong Xu;Kejie Zhao - 通讯作者:
Kejie Zhao
Thermally driven mesoscale chemomechanical interplay in Li0.5Ni0.6Mn0.2Co0.2O2cathode materials
- DOI:
10.1039/c8ta08973f - 发表时间:
2018-10 - 期刊:
- 影响因子:11.9
- 作者:
Chenxi Wei;Yan Zhang;Sang-Jun Lee;Linqin Mu;Jin Liu;Chenxu Wang;Yang Yang;Marca Doeff;Piero Pianetta;Dennis Nordlund;Xi-Wen Du;Yangchao Tian;Kejie Zhao;Jun-Sik Lee;Feng Lin;Yijin Liu - 通讯作者:
Yijin Liu
Smart Home Security Based on the Internet of Things
基于物联网的智能家居安全
- DOI:
10.1007/978-3-030-62746-1_57 - 发表时间:
2020-11-05 - 期刊:
- 影响因子:0
- 作者:
Kejie Zhao;Jiezhuo Zhong;Jun Ye - 通讯作者:
Jun Ye
Computational modeling of coupled mechanical damage and electrochemistry in ternary oxide composite electrodes
三元氧化物复合电极机械损伤和电化学耦合的计算模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:9.2
- 作者:
Jiaxiu Han;Nikhil Sharma;Kejie Zhao - 通讯作者:
Kejie Zhao
Kejie Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kejie Zhao', 18)}}的其他基金
Conference: Support for Future Faculty Symposium at 60th Society of Engineering Science (SES) Conference; Minneapolis, Minnesota; 8-11 October 2023
会议:支持第 60 届工程科学学会 (SES) 会议的未来教师研讨会;
- 批准号:
2322824 - 财政年份:2023
- 资助金额:
$ 32.61万 - 项目类别:
Standard Grant
Mechanics of Organic Mixed Ionic-Electronic Conductors (OMIECs)
有机混合离子电子导体 (OMIEC) 的力学
- 批准号:
2210158 - 财政年份:2022
- 资助金额:
$ 32.61万 - 项目类别:
Standard Grant
CAREER: Superelastic Organic Semiconductors (SOSs): A New Class of Molecular Crystals of Responsive Shape Memory
职业:超弹性有机半导体(SOS):一类新型响应形状记忆分子晶体
- 批准号:
1941323 - 财政年份:2020
- 资助金额:
$ 32.61万 - 项目类别:
Standard Grant
Collaborative Research: Chemomechanical Degradation of Oxide Cathodes in Li-ion Batteries: Synchrotron Analysis, Environmental Measurements, and Data Mining
合作研究:锂离子电池中氧化物阴极的化学机械降解:同步加速器分析、环境测量和数据挖掘
- 批准号:
1832707 - 财政年份:2018
- 资助金额:
$ 32.61万 - 项目类别:
Standard Grant
Collaborative Research: Chemomechanical Degradation of Oxide Cathodes in Li-ion Batteries: Synchrotron Analysis, Environmental Measurements, and Data Mining
合作研究:锂离子电池中氧化物阴极的化学机械降解:同步加速器分析、环境测量和数据挖掘
- 批准号:
1832707 - 财政年份:2018
- 资助金额:
$ 32.61万 - 项目类别:
Standard Grant
Bridging Mechanics and Electrochemistry: Theories and Experiments on Battery Materials
桥接力学和电化学:电池材料的理论与实验
- 批准号:
1726392 - 财政年份:2017
- 资助金额:
$ 32.61万 - 项目类别:
Standard Grant
Surface Coating for High-Capacity Electrodes in Li-ion Batteries: in-situ TEM Characterization and First-Principles Modeling
锂离子电池高容量电极的表面涂层:原位 TEM 表征和第一原理建模
- 批准号:
1603866 - 财政年份:2016
- 资助金额:
$ 32.61万 - 项目类别:
Standard Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
- 批准号:
2325464 - 财政年份:2024
- 资助金额:
$ 32.61万 - 项目类别:
Continuing Grant
Collaborative Research: ORCC: Integrated mechanistic predictions of ecological and evolutionary responses to increasing aridity across the range of an iconic species
合作研究:ORCC:对标志性物种范围内日益干旱的生态和进化反应的综合机制预测
- 批准号:
2307793 - 财政年份:2023
- 资助金额:
$ 32.61万 - 项目类别:
Standard Grant
Collaborative Research: Mechanistic study of mesoporous carbon formation from food waste
合作研究:食物垃圾中介孔碳形成的机理研究
- 批准号:
2305251 - 财政年份:2023
- 资助金额:
$ 32.61万 - 项目类别:
Standard Grant
Collaborative Research: Mechanistic modeling of cell encapsulation
合作研究:细胞封装的机制建模
- 批准号:
2247000 - 财政年份:2023
- 资助金额:
$ 32.61万 - 项目类别:
Continuing Grant
Collaborative Research: EDGE CMT: Mechanistic basis of cricket wing dimorphism: predicting phenotype from genotype in complex threshold traits
合作研究:EDGE CMT:蟋蟀翅膀二态性的机制基础:从复杂阈值性状的基因型预测表型
- 批准号:
2319791 - 财政年份:2023
- 资助金额:
$ 32.61万 - 项目类别:
Standard Grant