Surface Coating for High-Capacity Electrodes in Li-ion Batteries: in-situ TEM Characterization and First-Principles Modeling
锂离子电池高容量电极的表面涂层:原位 TEM 表征和第一原理建模
基本信息
- 批准号:1603866
- 负责人:
- 金额:$ 25.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rechargeable lithium ion batteries help to enable sustainable energy systems by storing electricity generated by intermittent renewable resources such as wind and solar energy, or by powering zero-emission electric vehicles charged by electricity from renewable resources. However, lithium ion batteries designed for high energy storage capacity suffer from rapid power capacity loss over repeated charge and discharge cycles. This project seeks to elucidate of the underlying mechanisms of capacity loss through microscopic investigation of the changes in battery electrode structure during charging and recharging using transmission electron microscopy (TEM), which enables visualization at the nanometer scale. The microscopic study will be complimented by mathematical modeling studies that seek to predict the observed behavior. The educational activities associated with this project focus on hands-on outreach activities for middle school students on battery technology, coordinated through the Women in Engineering program at Purdue University. The overall goal of this research is to investigate how metal oxide coatings on high-capacity, lithium ion battery electrodes affect charge capacity fade through in-situ transmission electron microcopy (TEM) experiments and first-principles modeling. Surface coatings can potentially mitigate the degradation of electrodes through regulation of the electrochemical process of lithiation and the remediation of deformation dynamics. However, the electro-chemo-mechanical behavior of the coating materials is poorly understood. To develop a fundamental understanding of these processes, the research plan has two major objectives. The first objective is to synthesize core-shell structures of metal oxide-coated nanowires to directly observe the lithiation reaction and the morphological evolution and phase transitions associated with it using real-time, in situ TEM. The second objective is to perform first-principles atomistic modeling to develop a complimentary fundamental understanding of the effects of lithium ion insertion and extraction on electronic structure, crystal lattice structure, and structural stability. Through these objectives, the proposed research will determine the thermodynamics of diffusive reactions and phase transitions, the kinetics of structural evolution, ionic transport, and interfacial reactions, as well as the mechanical properties of the lithiated phases in the coating materials. The knowledge gained from this work will facilitate the selection of coating materials for high-capacity lithium ion batteries, and advance fundamental understanding of the intrinsic mechanisms underlying the cyclic performance of Li-ion batteries.
可充电锂离子电池通过存储风能和太阳能等间歇性可再生资源产生的电力,或为由可再生资源电力充电的零排放电动汽车提供动力,有助于实现可持续能源系统。 然而,专为高能量存储容量而设计的锂离子电池在重复充电和放电循环中会遭受快速功率容量损失。该项目旨在通过使用透射电子显微镜(TEM)对充电和再充电过程中电池电极结构的变化进行微观研究,从而阐明容量损失的根本机制,从而实现纳米尺度的可视化。微观研究将得到数学建模研究的补充,旨在预测观察到的行为。与该项目相关的教育活动重点是为中学生提供有关电池技术的实践推广活动,并通过普渡大学的女性工程项目进行协调。本研究的总体目标是通过原位透射电子显微镜 (TEM) 实验和第一原理建模,研究高容量锂离子电池电极上的金属氧化物涂层如何影响充电容量衰减。 表面涂层可以通过调节锂化的电化学过程和修复变形动力学来潜在地减轻电极的降解。 然而,人们对涂层材料的电化学机械行为知之甚少。为了对这些过程有一个基本的了解,该研究计划有两个主要目标。第一个目标是合成金属氧化物涂层纳米线的核壳结构,以使用实时原位 TEM 直接观察锂化反应以及与之相关的形态演化和相变。第二个目标是进行第一原理原子建模,以形成对锂离子嵌入和脱嵌对电子结构、晶格结构和结构稳定性影响的补充性基本理解。 通过这些目标,拟议的研究将确定扩散反应和相变的热力学、结构演化的动力学、离子传输和界面反应,以及涂层材料中锂化相的机械性能。从这项工作中获得的知识将有助于选择高容量锂离子电池的涂层材料,并促进对锂离子电池循环性能的内在机制的基本理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kejie Zhao其他文献
Smart Home Security Based on the Internet of Things
基于物联网的智能家居安全
- DOI:
10.1007/978-3-030-62746-1_57 - 发表时间:
2020-11-05 - 期刊:
- 影响因子:0
- 作者:
Kejie Zhao;Jiezhuo Zhong;Jun Ye - 通讯作者:
Jun Ye
Computational modeling of coupled mechanical damage and electrochemistry in ternary oxide composite electrodes
三元氧化物复合电极机械损伤和电化学耦合的计算模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:9.2
- 作者:
Jiaxiu Han;Nikhil Sharma;Kejie Zhao - 通讯作者:
Kejie Zhao
Screening virulence factors of porcine extraintestinal pathogenic Escherichia coli (an emerging pathotype) required for optimal growth in swine blood.
筛选猪血液中最佳生长所需的猪肠外致病性大肠杆菌(一种新兴致病型)的毒力因子。
- DOI:
10.1111/tbed.13848 - 发表时间:
2020-09-24 - 期刊:
- 影响因子:0
- 作者:
Jiale Ma;Zhixin Cheng;Qiankun Bai;Kejie Zhao;Z. Pan;Huochun Yao - 通讯作者:
Huochun Yao
A comparison of AA2024 and AA7150 subjected to ultrasonic shot peening: Microstructure, surface segregation and corrosion
AA2024和AA7150经超声波喷丸处理的比较:显微组织、表面偏析和腐蚀
- DOI:
10.1016/j.surfcoat.2018.01.072 - 发表时间:
2018 - 期刊:
- 影响因子:5.4
- 作者:
Qingqing Sun;Xingtao Liu;Qingyou Han;Jie Li;Rong Xu;Kejie Zhao - 通讯作者:
Kejie Zhao
Thermally driven mesoscale chemomechanical interplay in Li0.5Ni0.6Mn0.2Co0.2O2cathode materials
- DOI:
10.1039/c8ta08973f - 发表时间:
2018-10 - 期刊:
- 影响因子:11.9
- 作者:
Chenxi Wei;Yan Zhang;Sang-Jun Lee;Linqin Mu;Jin Liu;Chenxu Wang;Yang Yang;Marca Doeff;Piero Pianetta;Dennis Nordlund;Xi-Wen Du;Yangchao Tian;Kejie Zhao;Jun-Sik Lee;Feng Lin;Yijin Liu - 通讯作者:
Yijin Liu
Kejie Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kejie Zhao', 18)}}的其他基金
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
- 批准号:
2325463 - 财政年份:2024
- 资助金额:
$ 25.47万 - 项目类别:
Continuing Grant
Conference: Support for Future Faculty Symposium at 60th Society of Engineering Science (SES) Conference; Minneapolis, Minnesota; 8-11 October 2023
会议:支持第 60 届工程科学学会 (SES) 会议的未来教师研讨会;
- 批准号:
2322824 - 财政年份:2023
- 资助金额:
$ 25.47万 - 项目类别:
Standard Grant
Mechanics of Organic Mixed Ionic-Electronic Conductors (OMIECs)
有机混合离子电子导体 (OMIEC) 的力学
- 批准号:
2210158 - 财政年份:2022
- 资助金额:
$ 25.47万 - 项目类别:
Standard Grant
CAREER: Superelastic Organic Semiconductors (SOSs): A New Class of Molecular Crystals of Responsive Shape Memory
职业:超弹性有机半导体(SOS):一类新型响应形状记忆分子晶体
- 批准号:
1941323 - 财政年份:2020
- 资助金额:
$ 25.47万 - 项目类别:
Standard Grant
Collaborative Research: Chemomechanical Degradation of Oxide Cathodes in Li-ion Batteries: Synchrotron Analysis, Environmental Measurements, and Data Mining
合作研究:锂离子电池中氧化物阴极的化学机械降解:同步加速器分析、环境测量和数据挖掘
- 批准号:
1832707 - 财政年份:2018
- 资助金额:
$ 25.47万 - 项目类别:
Standard Grant
Collaborative Research: Chemomechanical Degradation of Oxide Cathodes in Li-ion Batteries: Synchrotron Analysis, Environmental Measurements, and Data Mining
合作研究:锂离子电池中氧化物阴极的化学机械降解:同步加速器分析、环境测量和数据挖掘
- 批准号:
1832707 - 财政年份:2018
- 资助金额:
$ 25.47万 - 项目类别:
Standard Grant
Bridging Mechanics and Electrochemistry: Theories and Experiments on Battery Materials
桥接力学和电化学:电池材料的理论与实验
- 批准号:
1726392 - 财政年份:2017
- 资助金额:
$ 25.47万 - 项目类别:
Standard Grant
相似国自然基金
基于“流血-结痂”愈合机制构筑抗冲击-烧蚀HfCnws@BN增韧Hf-Ta-Si-C涂层研究
- 批准号:52302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
磷酸铝/Co高温复合涂层离子导电特性的演变规律及电磁损耗机理研究
- 批准号:52301188
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于微三维基元构筑导热网络-界面耦合的导热涂层制备及机理研究
- 批准号:52303102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氧化物弥散强化金属基涂层的爆炸压焊机理研究
- 批准号:12302436
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于压电效应的环境激发电荷响应涂层的构建及其抗菌防污机理
- 批准号:52301095
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Coating network and barrier property design strategies, for protection against hydrogen embrittlement
涂层网络和阻隔性能设计策略,以防止氢脆
- 批准号:
2902353 - 财政年份:2024
- 资助金额:
$ 25.47万 - 项目类别:
Studentship
Zero Embrittlement H2 Tank Coating Testing ( Phase 3 )
零脆化氢气储罐涂层测试(第 3 阶段)
- 批准号:
10106846 - 财政年份:2024
- 资助金额:
$ 25.47万 - 项目类别:
Launchpad
CAREER: Hybrid Surface Coating Toward Corrosion-Controlled Magnesium-Based Implants
职业:针对腐蚀控制镁基植入物的混合表面涂层
- 批准号:
2339911 - 财政年份:2024
- 资助金额:
$ 25.47万 - 项目类别:
Continuing Grant
Coating the cell surface with adhesive polymers: a strategy to enhance cell adhesion
用粘附聚合物涂覆细胞表面:增强细胞粘附的策略
- 批准号:
EP/X037622/1 - 财政年份:2024
- 资助金额:
$ 25.47万 - 项目类别:
Research Grant
An Antimicrobial Coating and a Cost-Effective Manufacturing Process to Apply it to Orthopaedic Implants, Reducing Surgical Site Infections by >50%
An%20抗菌%20涂层%20和%20a%20成本效益%20制造%20流程%20to%20应用%20it%20to%20骨科%20植入物、%20减少%20外科%20部位%20感染%20by%20>50%
- 批准号:
10057339 - 财政年份:2023
- 资助金额:
$ 25.47万 - 项目类别:
Collaborative R&D