DESC:Type I: Sustainable Serverless Computing
DESC:类型 I:可持续无服务器计算
基本信息
- 批准号:2324514
- 负责人:
- 金额:$ 54.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cloud computing has transformed our everyday lives by enabling on-demand access to powerful computer system resources from Internet-connected platforms including smartphones, digital health devices, connected vehicles, and smart home systems. Serverless computing is an emerging paradigm that enables fine granularity function-level cloud microservices to be accessible by these smart platforms. The paradigm allows cloud computing service providers to more efficiently provision their compute resources, which translates into cost savings for both developers and service providers. This in turn is expected to make digital intelligence more accessible, affordable, and pervasive in our everyday lives. However, one of the biggest outstanding challenges with serverless computing is to support function-level performance guarantees while minimizing the environmental impact of cloud datacenters that host serverless computing. Cloud datacenters are already a major contributor to global carbon emissions, wastewater generation, and electricity use, and serverless computing will exacerbate these pressures on the global environment. This project will involve transformative research to realize sustainable serverless computing with three major thrusts that will be addressed in an integrated manner: 1) Performance and sustainability modeling for serverless computing will be conducted to capture the performance of serverless workflows in datacenters while also characterizing carbon footprint and water use for supporting serverless computing for the first time, including the overheads from manufacturing, operation, transportation, water-use, and end-of-life decommissioning; 2) Encapsulation layer enhancements will be developed to address some of the biggest performance bottlenecks with serverless computing, such as high startup latency, low performance storage, and fault tolerance; while simultaneously minimizing operational and embodied carbon footprint associated with serverless computing; and 3) Orchestration layer enhancements will be devised based on hybrid evolutionary-learning and multi-agent reinforcement learning to minimize the environmental impact of serverless computing while meeting performance goals across geographically-distributed datacenter platforms.This project is aligned with the goals of the National Discovery Cloud for Climate (NDC-C) program as it involves cloud-based data modeling, analysis, and optimization for a variety of emerging serverless computing applications, including weather predictions from multi-modal data and climate modeling, that promise to advance climate-related research. The project also aims to realize fundamentally more sustainable cloud computing infrastructures that can support large-scale climate science and engineering workloads in the scope of the NDC-C program while reducing the damaging environmental impacts of cloud computing datacenters that execute them. The emphasis on characterizing and co-optimizing the performance and environmental impacts of serverless computing will improve the proliferation of low-cost cloud computing, making it more cost-effective and seamless to integrate into computing-driven services that can enrich our everyday lives. Workforce development is another important broader impact of this project, with high school students, undergraduate and graduate students being trained in the multi-disciplinary domains of high-performance computing, optimization theory, and environmental sustainability. Close collaboration with industrial partners will also ensure timely dissemination and integration of research outcomes into real-world sustainable climate-friendly computing initiatives.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
云计算改变了我们的日常生活,使我们能够从智能手机、数字健康设备、联网车辆和智能家居系统等互联网连接平台按需访问强大的计算机系统资源。无服务器计算是一种新兴范例,它使这些智能平台能够访问细粒度的功能级云微服务。该范例允许云计算服务提供商更有效地配置其计算资源,这可以为开发人员和服务提供商节省成本。这反过来又有望使数字智能在我们的日常生活中更容易获得、更便宜、更普遍。然而,无服务器计算面临的最大挑战之一是支持功能级性能保证,同时最大限度地减少托管无服务器计算的云数据中心的环境影响。云数据中心已经成为全球碳排放、废水产生和电力使用的主要贡献者,而无服务器计算将加剧这些对全球环境的压力。该项目将涉及实现可持续无服务器计算的变革性研究,其三大重点将以综合方式解决:1)将进行无服务器计算的性能和可持续性建模,以捕获数据中心无服务器工作流程的性能,同时表征碳足迹首次支持无服务器计算的用水量,包括制造、运营、运输、用水和报废退役的间接费用; 2)将开发封装层增强功能,以解决无服务器计算的一些最大的性能瓶颈,例如高启动延迟、低性能存储和容错;同时最大限度地减少与无服务器计算相关的运营碳足迹和体现碳足迹; 3) 编排层增强功能将基于混合进化学习和多智能体强化学习来设计,以最大限度地减少无服务器计算对环境的影响,同时满足地理分布式数据中心平台的性能目标。该项目与国家计划的目标一致气候发现云 (NDC-C) 计划,因为它涉及各种新兴无服务器计算应用程序的基于云的数据建模、分析和优化,包括多模态数据的天气预报和气候建模,有望推动气候变化相关研究。该项目还旨在从根本上实现更可持续的云计算基础设施,以支持 NDC-C 计划范围内的大规模气候科学和工程工作负载,同时减少执行这些计划的云计算数据中心对环境的破坏性影响。强调表征和共同优化无服务器计算的性能和环境影响将促进低成本云计算的普及,使其更具成本效益且无缝地集成到计算驱动的服务中,从而丰富我们的日常生活。劳动力发展是该项目的另一个重要的更广泛的影响,高中生、本科生和研究生将接受高性能计算、优化理论和环境可持续性等多学科领域的培训。与工业合作伙伴的密切合作还将确保及时传播研究成果并将其整合到现实世界的可持续气候友好型计算计划中。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sudeep Pasricha其他文献
Sudeep Pasricha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sudeep Pasricha', 18)}}的其他基金
CC* Compute: HPC Services for the Colorado State University System
CC* 计算:科罗拉多州立大学系统的 HPC 服务
- 批准号:
2201538 - 财政年份:2022
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
Collaborative Research: Workshop Series on Sustainable Computing
协作研究:可持续计算研讨会系列
- 批准号:
2126017 - 财政年份:2021
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
EAGER: Exploring Multi-Modal Deep Learning Systems for Sustainable Connected and Autonomous Vehicles
EAGER:探索可持续互联和自动驾驶汽车的多模态深度学习系统
- 批准号:
2132385 - 财政年份:2021
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
NSF Student Travel Grant for the 2019 HPCA/CGO/PPoPP Symposia
2019 年 HPCA/CGO/PPoPP 研讨会 NSF 学生旅费补助
- 批准号:
1854581 - 财政年份:2019
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
SHF: Small: Energy-Efficient and Reliable Communication with Silicon Photonics for Terascale Datacenters-on-Chip
SHF:小型:采用硅光子技术实现兆兆级片上数据中心的节能且可靠的通信
- 批准号:
1813370 - 财政年份:2018
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Enabling Smart Underground Mining with an Integrated Context-Aware Wireless Cyber-Physical Framework
CPS:协同:协作研究:通过集成的上下文感知无线网络物理框架实现智能地下采矿
- 批准号:
1646562 - 财政年份:2016
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
Cross-Layer Fault Resilience for Interconnection Networks in Multi-core SoCs
多核 SoC 中互连网络的跨层故障恢复
- 批准号:
1252500 - 财政年份:2013
- 资助金额:
$ 54.59万 - 项目类别:
Continuing Grant
SHF:Medium: Energy Efficient and Stochastically Robust Resource Allocation for Heterogeneous Computing
SHF:Medium:异构计算的节能和随机鲁棒资源分配
- 批准号:
1302693 - 财政年份:2013
- 资助金额:
$ 54.59万 - 项目类别:
Continuing Grant
相似国自然基金
不同菌根类型树种对亚热带森林土壤有机碳积累的影响机制
- 批准号:32371849
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
不同菌根类型树种与毛竹磷竞争对土壤碳动态的影响机制
- 批准号:32371726
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
菌根类型对亚热带山地森林土壤碳积累的影响及其作用机理
- 批准号:32371736
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
西南地区植被生长和类型转换变绿对局地气候的影响
- 批准号:42301027
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
齿菌属(Hydnum)的系统学与菌根组合类型研究
- 批准号:32300002
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
DESC: Type I: Data-driven system-design for sustainable long-lasting distributed infrastructures
DESC:类型 I:数据驱动的系统设计,实现可持续的持久分布式基础设施
- 批准号:
2324873 - 财政年份:2023
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type I: A User-Interactive Approach to Water Management for Sustainable Data Centers: From Water Efficiency to Self-Sufficiency
合作研究:DESC:类型 I:可持续数据中心水资源管理的用户交互方法:从用水效率到自给自足
- 批准号:
2324916 - 财政年份:2023
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
DESC: Type I: Towards Greener AI Computing: Designing and Managing Sustainable Heterogeneous Edge Data Centers
DESC:类型 I:迈向更绿色的人工智能计算:设计和管理可持续的异构边缘数据中心
- 批准号:
2324854 - 财政年份:2023
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant