SHF:Medium: Energy Efficient and Stochastically Robust Resource Allocation for Heterogeneous Computing
SHF:Medium:异构计算的节能和随机鲁棒资源分配
基本信息
- 批准号:1302693
- 负责人:
- 金额:$ 85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-15 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Parallel and distributed computing systems are often a heterogeneous mix of machines. As these systems continue to expand rapidly in capability, their computational energy expenditure has skyrocketed, requiring elaborate cooling facilities, which themselves consume significant energy. The need for energy-efficient resource management is thus paramount. Moreover, these systems frequently experience degraded performance and high power consumption due to circumstances that change unpredictably, such as thermal hotspots caused by load imbalances or sudden machine failures. As the complexity of systems grows, so does the importance of making system operation robust against these uncertainties. The goal of this award is to study stochastic-based models, metrics, and algorithmic strategies for deriving resource allocations that are energy-efficient and robust. The research focus is on deriving stochastic robustness and energy models from real-world data from heterogeneous computing machines; applying stochastic models for resource management strategies that co-optimize performance, robustness, computation energy, and cooling energy; developing novel schemes for real-time thermal modeling; and driving and validating the research with feedback collected from real-world petascale systems (Yellowstone at National Center of Atmospheric Research and Jaguar at Oak Ridge National Lab) and terascale systems (Colorado State University's ISTeC cluster and clusters at Oak Ridge National Lab).The research is expected to realize resource management strategies that are resilient to various sources of uncertainty at run-time while also considering the dynamics of temperature variations and cooling capacity to meet performance guarantees with unprecedented gains in system energy-efficiency in high performance computing environments. By lowering the energy costs and impact of uncertainties associated with computing, this research will ultimately render high performance computing accessible to a wider population of researchers and scientific problems. In the long term, the theoretical foundations and tools that emerge from this research will play a vital role in achieving the grand promise of sustainable computing at extreme scales within realistic power budgets. The broader impacts of the research include: incorporate research results into all levels of teaching, including graduate, undergraduate, secondary, and even elementary education; increase participation by underrepresented groups; and foster close ties with industry and government labs to transfer the developed knowledge quickly into real-world deployments.
并行和分布式计算系统通常是机器的异构组合。随着这些系统的能力不断快速扩展,它们的计算能源消耗猛增,需要复杂的冷却设施,而这些设施本身会消耗大量能源。因此,对节能资源管理的需求至关重要。此外,由于环境不可预测的变化,例如负载不平衡或突然的机器故障引起的热点,这些系统经常会出现性能下降和功耗高的情况。随着系统复杂性的增加,使系统运行稳健以应对这些不确定性的重要性也随之增加。该奖项的目标是研究基于随机的模型、指标和算法策略,以得出节能且稳健的资源分配。研究重点是从异构计算机的真实数据中导出随机鲁棒性和能量模型;将随机模型应用于资源管理策略,共同优化性能、鲁棒性、计算能量和冷却能量;开发实时热建模的新颖方案;并利用从现实世界千万亿级系统(国家大气研究中心的 Yellowstone 和橡树岭国家实验室的 Jaguar)和万亿级系统(科罗拉多州立大学的 ISTeC 集群和橡树岭国家实验室的集群)收集的反馈来推动和验证研究。研究预计将实现能够适应运行时各种不确定性来源的资源管理策略,同时还考虑温度变化和冷却能力的动态,以满足性能保证,并在系统中获得前所未有的收益高性能计算环境中的能源效率。通过降低能源成本和与计算相关的不确定性的影响,这项研究最终将使更广泛的研究人员和科学问题能够使用高性能计算。从长远来看,这项研究产生的理论基础和工具将在实现现实功率预算内极端规模可持续计算的宏伟承诺方面发挥至关重要的作用。该研究更广泛的影响包括: 将研究成果纳入各级教学,包括研究生、本科生、中学,甚至初等教育;增加代表性不足群体的参与;并与行业和政府实验室建立密切联系,将开发的知识快速转移到现实世界的部署中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sudeep Pasricha其他文献
Sudeep Pasricha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sudeep Pasricha', 18)}}的其他基金
DESC:Type I: Sustainable Serverless Computing
DESC:类型 I:可持续无服务器计算
- 批准号:
2324514 - 财政年份:2023
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
CC* Compute: HPC Services for the Colorado State University System
CC* 计算:科罗拉多州立大学系统的 HPC 服务
- 批准号:
2201538 - 财政年份:2022
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
Collaborative Research: Workshop Series on Sustainable Computing
协作研究:可持续计算研讨会系列
- 批准号:
2126017 - 财政年份:2021
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
EAGER: Exploring Multi-Modal Deep Learning Systems for Sustainable Connected and Autonomous Vehicles
EAGER:探索可持续互联和自动驾驶汽车的多模态深度学习系统
- 批准号:
2132385 - 财政年份:2021
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
NSF Student Travel Grant for the 2019 HPCA/CGO/PPoPP Symposia
2019 年 HPCA/CGO/PPoPP 研讨会 NSF 学生旅费补助
- 批准号:
1854581 - 财政年份:2019
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
SHF: Small: Energy-Efficient and Reliable Communication with Silicon Photonics for Terascale Datacenters-on-Chip
SHF:小型:采用硅光子技术实现兆兆级片上数据中心的节能且可靠的通信
- 批准号:
1813370 - 财政年份:2018
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Enabling Smart Underground Mining with an Integrated Context-Aware Wireless Cyber-Physical Framework
CPS:协同:协作研究:通过集成的上下文感知无线网络物理框架实现智能地下采矿
- 批准号:
1646562 - 财政年份:2016
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
Cross-Layer Fault Resilience for Interconnection Networks in Multi-core SoCs
多核 SoC 中互连网络的跨层故障恢复
- 批准号:
1252500 - 财政年份:2013
- 资助金额:
$ 85万 - 项目类别:
Continuing Grant
相似国自然基金
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SHF: Medium: Provably Correct, Energy-Efficient Edge Computing
SHF:中:可证明正确、节能的边缘计算
- 批准号:
2403144 - 财政年份:2024
- 资助金额:
$ 85万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
- 批准号:
2311544 - 财政年份:2023
- 资助金额:
$ 85万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
- 批准号:
2311543 - 财政年份:2023
- 资助金额:
$ 85万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Automated energy-efficient sensor data winnowing using native analog processing
协作研究:SHF:中:使用本机模拟处理进行自动节能传感器数据筛选
- 批准号:
2212345 - 财政年份:2022
- 资助金额:
$ 85万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Automated energy-efficient sensor data winnowing using native analog processing
协作研究:SHF:中:使用本机模拟处理进行自动节能传感器数据筛选
- 批准号:
2212346 - 财政年份:2022
- 资助金额:
$ 85万 - 项目类别:
Continuing Grant