DMREF/Collaborative Research: Architecting DNA Nanodevices into Metamaterials, Transducing Materials, and Assembling Materials
DMREF/合作研究:将 DNA 纳米器件构建为超材料、转换材料和组装材料
基本信息
- 批准号:2323969
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Soft architected materials self-assembled from nanoscale building blocks could have far-reaching applications in sensing, soft-robotics, energy, information storage, and medicine. Materials constructed from biological building blocks are attractive because they can integrate the advantages of biomolecular systems such as adaptability in response to external stimuli, capacity to dynamically interact with other materials, and ability to self-heal after chemical or mechanical degradation. DNA self-assembly provides a promising approach for creating such nano-architected materials due to its ability to produce precise nanostructures of unprecedented geometric complexity, tunable mechanical properties, and dynamic reconfiguration. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports fundamental research focused on developing self-assembled materials constructed from DNA with adaptable structures and unique mechanical properties, signal processing capabilities, and the ability to form a variety of materials from a single reconfigurable building block. The research is closely aligned with the Materials Genome Initiative, which seeks to accelerate materials discovery and deployment through integration of computational, experimental, and data-driven advances. In addition, the award will provide unique training for graduate and undergraduate students in DNA nanotechnology, biochemistry, molecular simulations, machine learning, and multi-scale modeling. All training opportunities will be leveraged to benefit students from underrepresented groups. Additionally, the results of the project will be disseminated through workshops that will engage broader research communities.This research project will advance the functional properties of architected DNA materials by integrating unique mechanical, signal-transducing, and shape-morphing properties. These materials will be constructed from nanoscale DNA building blocks with precisely designed structure and tailored mechanical and dynamic properties. These units will be assembled into larger materials consisting of many devices that interact with each other to coordinate the structure and mechanical response of the materials and achieve functions like transducing signals. Design principles will be established for these materials using molecular simulation and machine learning approaches to rapidly identify nanodevice and assembly designs for on-demand material properties. The team has a highly collaborative approach that combines expertise in DNA nanomaterials, single-molecule measurements, molecular and mesoscopic modeling, and machine learning. Using these capabilities, the team will focus on three goals: design, construct and implement (i) mechanical metamaterials self-assembled from compliant DNA origami nanostructures, (ii) signal transducing materials based on dynamic DNA devices, and (iii) polymorphic networks from assembly of reconfigurable multi-arm DNA origami nanodevices. This project is supported by the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) of the Directorate for Engineering (ENG) and the Division of Materials Research (DMR) of the Directorate for Mathematical and Physical Sciences (MPS).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由纳米级构件自组装而成的软建筑材料可以在传感、软机器人、能源、信息存储和医学领域具有深远的应用。由生物构件构建的材料很有吸引力,因为它们可以整合生物分子系统的优点,例如响应外部刺激的适应性、与其他材料动态相互作用的能力以及化学或机械降解后自我修复的能力。 DNA 自组装为制造此类纳米结构材料提供了一种有前途的方法,因为它能够产生具有前所未有的几何复杂性、可调机械性能和动态重构的精确纳米结构。设计材料以彻底改变和设计我们的未来 (DMREF) 奖项支持基础研究,重点是开发由 DNA 构建的自组装材料,这些材料具有适应性强的结构和独特的机械性能、信号处理能力以及从单一材料形成多种材料的能力可重新配置的构建块。该研究与材料基因组计划密切相关,该计划旨在通过整合计算、实验和数据驱动的进步来加速材料的发现和部署。此外,该奖项还将为研究生和本科生提供 DNA 纳米技术、生物化学、分子模拟、机器学习和多尺度建模方面的独特培训。所有培训机会都将用于使代表性不足群体的学生受益。此外,该项目的成果将通过研讨会进行传播,吸引更广泛的研究团体参与。该研究项目将通过整合独特的机械、信号转导和形状变形特性来提高 DNA 材料的功能特性。这些材料将由纳米级 DNA 构建模块构建而成,具有精确设计的结构和定制的机械和动态特性。这些单元将被组装成更大的材料,由许多彼此相互作用的设备组成,以协调材料的结构和机械响应,并实现诸如转换信号等功能。将使用分子模拟和机器学习方法为这些材料建立设计原则,以快速识别按需材料特性的纳米器件和组装设计。该团队采用高度协作的方法,结合了 DNA 纳米材料、单分子测量、分子和介观建模以及机器学习方面的专业知识。利用这些能力,该团队将专注于三个目标:设计、构建和实现 (i) 由顺应性 DNA 折纸纳米结构自组装的机械超材料,(ii) 基于动态 DNA 器件的信号转导材料,以及 (iii) 来自 DNA 折纸纳米结构的多态网络可重构多臂 DNA 折纸纳米器件的组装。该项目得到了工程理事会 (ENG) 土木、机械和制造创新部 (CMMI) 以及数学和物理科学理事会 (MPS) 材料研究部 (DMR) 的支持。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gaurav Arya其他文献
End-to-end Nanophotonics Inverse Design for Computational Imaging
计算成像的端到端纳米光子学逆向设计
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Zin Lin;Gaurav Arya;William F. Li;C. Roques;R. Pestourie;Zhaoyi Li;F. Capasso;M. Soljačić;Steven G. Johnson - 通讯作者:
Steven G. Johnson
Analytical van der Waals interaction potential for faceted nanoparticles
- DOI:
10.1039/d0nh00526f - 发表时间:
2020-10 - 期刊:
- 影响因子:9.7
- 作者:
Brian Hyun-jong Lee;Gaurav Arya - 通讯作者:
Gaurav Arya
Transcending shift-invariance in the paraxial regime via end-to-end inverse design of freeform nanophotonics.
通过自由形态纳米光子学的端到端逆向设计超越近轴区域的平移不变性。
- DOI:
10.1364/oe.492553 - 发表时间:
2023-02-03 - 期刊:
- 影响因子:3.8
- 作者:
William F. Li;Gaurav Arya;C. Roques;Zin Lin;Steven G. Johnson;M. Soljačić - 通讯作者:
M. Soljačić
Understanding the Surface and Interface Properties of Electrode Materials in Alkali-ion Batteries : A Combination of Experimental and Computational Studies
了解碱离子电池电极材料的表面和界面特性:实验和计算研究的结合
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Gaurav Arya;Renkun Chen;Miaofang Chi;Eric Fullerton;John Weare - 通讯作者:
John Weare
A state-of-the-art review on robotics in waste sorting: scope and challenges
- DOI:
10.1007/s12008-023-01320-w - 发表时间:
2023-05-06 - 期刊:
- 影响因子:0
- 作者:
Anushka G. Satav;Sunidhi Kubade;Chinmay Amrutkar;Gaurav Arya;Ashish Pawar - 通讯作者:
Ashish Pawar
Gaurav Arya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gaurav Arya', 18)}}的其他基金
DMREF/Collaborative Research: DNA-based Sensing, Communicating, and Phase-Separating Materials
DMREF/合作研究:基于 DNA 的传感、通信和相分离材料
- 批准号:
1921955 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
- 批准号:
2323118 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: De Novo Proteins as Junctions in Polymer Networks
合作研究:DMREF:De Novo 蛋白质作为聚合物网络中的连接点
- 批准号:
2323316 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant