Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
基本信息
- 批准号:2323117
- 负责人:
- 金额:$ 76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Rechargeable batteries have become one of the most popular energy storage devices for electric vehicles, electronics, and grid energy storage. Developing novel electrolytes for the next generation of rechargeable batteries require more understanding of transport properties, microstructures, and the impact of microstructure on transport property. In this project, the investigators will systematically vary the composition and concentration of the electrolytes to determine the optimum solution for advanced rechargeable batteries. The success of the proposed research will provide high throughput experimentation/characterization and machine learning platforms. Moreover, the integrated research and educational programs will broadly impact the university, secondary education, and the general public. The research results will be into the investigators' courses and be used to train undergraduate and graduate students in the interdisciplinary research areas. New educational outreach initiatives include having an Electrolyte for Energy Storage workshop for local high school students and teachers each fall to enhance the broader impact of this NSF project.The fundamental interactions in the electrolyte directly determine the solvation structures, kinetics, and battery performance of the bulk electrolytes. Understanding the complex interactions and their correlation with electrolyte performance is significant for exploring their working mechanisms and realizing the rational design of battery electrolytes. The novelty of this proposal lies in the use of advanced high-throughput characterization with the help of MD simulation and machine learning to determine the link between molecular interactions and the macroscopic properties of battery electrolytes. The proposal aims to (1) gain a good understanding of the solvation structure through multimodal characterization methods Raman and X-ray for high throughput experimentation/characterization. High-throughput X-ray scattering techniques (USAXS/SAXS/WAXS for APS) will be used to characterize solution organization as a function of ion composition, ion concentration, and temperature; (2) to correlate the structure-property relationship by studying transport properties through high-throughput computational screening studies. A computational platform will be developed to screen structure/property relationships by AIMD and MD; (3) A machine learning-based data analysis platform will be created to predict and identify battery properties by analyzing high-throughput structural and simulation data.This project is supported by the Division of Materials Research and the Chemical, Biological, Environmental Engineering and Transport Systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可充电电池已成为电动汽车、电子产品和电网储能最流行的储能设备之一。开发用于下一代可充电电池的新型电解质需要更多地了解传输特性、微观结构以及微观结构对传输特性的影响。在该项目中,研究人员将系统地改变电解质的成分和浓度,以确定先进可充电电池的最佳解决方案。拟议研究的成功将提供高通量实验/表征和机器学习平台。此外,综合研究和教育计划将广泛影响大学、中等教育和公众。研究成果将纳入研究者的课程中,并用于培养跨学科研究领域的本科生和研究生。新的教育推广计划包括每年秋天为当地高中生和教师举办一次储能电解质研讨会,以增强该 NSF 项目的更广泛影响。电解质中的基本相互作用直接决定了电解质的溶剂化结构、动力学和电池性能。散装电解质。了解复杂的相互作用及其与电解质性能的相关性对于探索其工作机制和实现电池电解质的合理设计具有重要意义。该提案的新颖性在于利用先进的高通量表征并借助MD模拟和机器学习来确定分子相互作用与电池电解质的宏观特性之间的联系。该提案的目的是 (1) 通过用于高通量实验/表征的多模态表征方法拉曼和 X 射线获得对溶剂化结构的良好理解。高通量 X 射线散射技术(用于 APS 的 USAXS/SAXS/WAXS)将用于表征溶液组织随离子成分、离子浓度和温度的变化; (2) 通过高通量计算筛选研究来研究传输特性,从而关联结构-特性关系。将开发一个计算平台,通过AIMD和MD筛选结构/性质关系; (3) 将创建一个基于机器学习的数据分析平台,通过分析高通量结构和模拟数据来预测和识别电池特性。该项目得到材料研究部和化学、生物、环境工程和运输部的支持该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unveiling the Liquid Electrolyte Solvation Structure by Small Angle X-ray Scattering
通过小角 X 射线散射揭示液体电解质溶剂化结构
- DOI:10.1021/acs.chemmater.3c01648
- 发表时间:2023-12-01
- 期刊:
- 影响因子:8.6
- 作者:Xinyi Liu;Lingzhe Fang;Xingyi Lyu;R. Winans;Tao Li
- 通讯作者:Tao Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao Li其他文献
Feasibility Exploration of Superalloys for AISI 4140 Steel Repairing using Laser Engineered Net Shaping
使用激光净成形修复 AISI 4140 钢的高温合金的可行性探索
- DOI:
10.1016/j.promfg.2017.07.080 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Zhichao Liu;W. Cong;Hoyeol Kim;F. Ning;Qiuhong Jiang;Tao Li;Hongchao Zhang;Yingge Zhou - 通讯作者:
Yingge Zhou
A Detection Method Against Selfish Mining-Like Attacks Based on Ensemble Deep Learning in IoT
物联网中基于集成深度学习的自私挖矿类攻击检测方法
- DOI:
10.1109/jiot.2024.3367689 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:10.6
- 作者:
Yilei Wang;Chunmei Li;Yiting Zhang;Tao Li;Jianting Ning;Keke Gai;K. Choo - 通讯作者:
K. Choo
Community Oncology Medical Homes: Physician-Driven Change to Improve Patient Care and Reduce Costs.
社区肿瘤医疗之家:医生推动的变革,以改善患者护理并降低成本。
- DOI:
10.1200/jop.2015.005256 - 发表时间:
2015-07-28 - 期刊:
- 影响因子:0
- 作者:
T. Waters;J. Webster;Laura A. Stevens;Tao Li;C. Kaplan;I. Graetz;B. McAneny - 通讯作者:
B. McAneny
Single Channel Speech Enhancement Algorithm based on BLSTM-DNN Bidirectional Optimized Hybrid Model
基于BLSTM-DNN双向优化混合模型的单通道语音增强算法
- DOI:
10.1088/1757-899x/719/1/012027 - 发表时间:
2020-01-08 - 期刊:
- 影响因子:0
- 作者:
Xiaoyue Sun;Ru;Tao Li;Dengcai Yang - 通讯作者:
Dengcai Yang
Microstructure and electrical properties of Sb2Te phase-change material
Sb2Te相变材料的微观结构与电学性能
- DOI:
10.1117/12.2246978 - 发表时间:
2016-10-12 - 期刊:
- 影响因子:1.7
- 作者:
Guangyu Liu;Liangcai Wu;Tao Li;F. Rao;Sannian Song;Bo Liu;Zhitang Song - 通讯作者:
Zhitang Song
Tao Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tao Li', 18)}}的其他基金
CRII: SaTC: Securing Smart Devices with AI-Powered mmWave Radar in New-Generation Wireless Networks
CRII:SaTC:在新一代无线网络中使用人工智能驱动的毫米波雷达保护智能设备
- 批准号:
2422863 - 财政年份:2024
- 资助金额:
$ 76万 - 项目类别:
Standard Grant
CRII: SaTC: Securing Smart Devices with AI-Powered mmWave Radar in New-Generation Wireless Networks
CRII:SaTC:在新一代无线网络中使用人工智能驱动的毫米波雷达保护智能设备
- 批准号:
2245760 - 财政年份:2023
- 资助金额:
$ 76万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
- 批准号:
2328828 - 财政年份:2023
- 资助金额:
$ 76万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
- 批准号:
2328828 - 财政年份:2023
- 资助金额:
$ 76万 - 项目类别:
Standard Grant
Collaborative Research: Rational design of Ni/Ga intermetallic compounds for efficient light alkanes conversion through ammonia reforming
合作研究:合理设计Ni/Ga金属间化合物,通过氨重整实现轻质烷烃的高效转化
- 批准号:
2210868 - 财政年份:2022
- 资助金额:
$ 76万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Reversible Formation of Sodium Hydrosulfide in Hybrid Electrolytes for High-Energy Density Storage
合作研究:了解用于高能量密度存储的混合电解质中硫氢化钠的可逆形成
- 批准号:
2208972 - 财政年份:2022
- 资助金额:
$ 76万 - 项目类别:
Standard Grant
Collaborative Research: Characterization of Transport Properties and Microstructures of Battery Electrolytes via In Situ Spectroscopy
合作研究:通过原位光谱表征电池电解质的传输特性和微观结构
- 批准号:
2120559 - 财政年份:2021
- 资助金额:
$ 76万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Enhancing Mobile VR/AR User Experience: An Integrated Architecture-System Approach
SHF:媒介:协作研究:增强移动 VR/AR 用户体验:集成架构系统方法
- 批准号:
1900713 - 财政年份:2019
- 资助金额:
$ 76万 - 项目类别:
Continuing Grant
Collaborative Research: Design of a Novel Photo-Thermo-Catalyst for Enhanced Activity and Stability of Dry Reforming of Methane
合作研究:设计新型光热催化剂以增强甲烷干重整的活性和稳定性
- 批准号:
1924574 - 财政年份:2019
- 资助金额:
$ 76万 - 项目类别:
Standard Grant
Collaborative Research: Design of a Novel Photo-Thermo-Catalyst for Enhanced Activity and Stability of Dry Reforming of Methane
合作研究:设计新型光热催化剂以增强甲烷干重整的活性和稳定性
- 批准号:
1924574 - 财政年份:2019
- 资助金额:
$ 76万 - 项目类别:
Standard Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 76万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 76万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 76万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
- 批准号:
2323118 - 财政年份:2023
- 资助金额:
$ 76万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: De Novo Proteins as Junctions in Polymer Networks
合作研究:DMREF:De Novo 蛋白质作为聚合物网络中的连接点
- 批准号:
2323316 - 财政年份:2023
- 资助金额:
$ 76万 - 项目类别:
Standard Grant