NSF-BII: Integrative Movement Sciences Institute

NSF-BII:综合运动科学研究所

基本信息

  • 批准号:
    2319710
  • 负责人:
  • 金额:
    $ 1499.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2030-02-28
  • 项目状态:
    未结题

项目摘要

Muscle is the active tissue that drives the remarkable agility of animals, enabling feats of speed, endurance, and maneuverability in challenging environments. Understanding how muscle controls movement is essential for animal performance and evolution, and for maintaining human health throughout life. However, muscle function during fast, unsteady motions in complex environments cannot be accurately predicted by current models. Current understanding is limited by isolation among fields, resulting in knowledge gaps between “bottom-up” reductionist approaches that characterize molecules and tissues and “top down” organismal approaches that focus on animal behavior. The Integrative Movement Sciences Institute (IMSI) will bridge these gaps by connecting “bottom-up” and “top-down” approaches to integrate the contributions of mechanical, neural, and sensory systems to movement control. An interdisciplinary team spanning 21 institutions across the country will lead scientific research and training to integrate investigations across structural levels and timescales from molecules to organisms and nanoseconds to generations. The IMSI collaborative network will train scientists in interdisciplinary teamwork, mathematical modeling, data analysis, and open data sharing. IMSI activities will drive innovation in biophysics, physiology, biomechanics, neuroscience, and engineering. Understanding the muscular control of agile movement has wide-reaching applications in bio-technology and the bio-economy through design of movement therapies, rehabilitation programs and mobility assistance devices.Dynamic muscle function forms a critical foundation for an integrative understanding of movement, yet it remains a fundamental challenge to predict muscle force output in fast and unsteady conditions. IMSI will integrate muscular control of movement across scales by critically examining assumptions of current approaches, developing new experiments and models to bridge “bottom-up” and “top-down” perspectives, and constructing a dynamic muscle movement paradigm to transform basic science, clinical and technical applications. Cross-cutting themes include unsteady and perturbed movements, multiscale modeling, and unifying invertebrate, vertebrate, and human studies. Research Cores include: (1) intrinsic muscle dynamics with rheological and X-ray diffraction experiments at nanometer to organismal scales; (2) embedded neuromechanical control to investigate how intrinsic mechanics and sensorimotor networks shape unsteady movement; (3) resilience and versatility to determine how variation in musculoskeletal properties and capacity drive whole-body movement; (4) risk-reward and learning, to determine how experience leads to movement optimization when navigating environmental risks and rewards; and (5) diversity and convergence in motor systems to characterize evolution of dynamic muscle function. IMSI faculty have expertise ranging from molecular biophysics of muscle proteins to animal ecology and human-machine interaction. The team-based science, near-peer mentorship and co-supervisory structure will foster community and provide trainees with a wide mentor network from a range of institutions from primarily undergraduate institutions to research intensive institutions, creating a training pipeline from undergraduates to faculty. IMSI will transform movement sciences by building a new foundation for dynamic muscle function and neuromuscular control of movement that integrates across disciplines, organisms, and structural scales.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
肌肉是驱动动物非凡敏捷性的活性组织,能够在充满挑战的环境中实现速度、耐力和机动性,了解肌肉如何控制运动对于动物的表现和进化以及维持人类一生的健康至关重要。当前的模型无法准确预测复杂环境中快速、不稳定运动过程中的功能,目前的理解受到领域之间隔离的限制,导致表征分子和组织的“自下而上”的还原论方法与“自上而下”的生物学方法之间存在知识差距。专注于动物行为。综合运动科学研究所 (IMSI) 将通过连接“自下而上”和“自上而下”的方法来整合机械、神经和感觉系统对运动控制的贡献,从而弥补这些差距,这是一个横跨 21 个机构的跨学科团队。国家将领导科学研究和培训,研究从分子到生物体、从纳秒到世代的跨结构水平和时间尺度的整合,IMSI 协作网络将培训科学家进行跨学科团队合作、数学建模、数据分析和开放数据共享。创新于通过设计运动疗法、康复计划和行动辅助装置,了解敏捷运动的肌肉控制在生物技术和生物经济中具有广泛的应用。 IMSI 是对运动进行综合理解的关键基础,但通过批判性地检验当前方法的假设、开发新的实验和模型来预测整合快速和不稳定条件下的肌肉力量输出仍然是一个基本挑战。连接“自下而上”和“自上而下”的视角,构建动态肌肉运动范式来改变基础科学、临床和技术应用。跨领域主题包括不稳定和扰动运动、多尺度建模以及统一无脊椎动物、脊椎动物、研究核心包括:(1)通过纳米尺度的流变学和 X 射线衍射实验进行内在肌肉动力学;(2)嵌入式神经力学控制,以研究内在力学和感觉运动网络塑造不稳定的运动;(3)弹性和多功能性,以确定肌肉骨骼特性和能力的变化如何驱动全身运动;(4)风险回报和学习,以确定在应对环境风险和回报时经验如何导致运动优化(5) 运动系统的多样性和收敛性,以表征动态肌肉功能的进化。 IMSI 教师拥有从肌肉蛋白的分子生物物理学到动物生态学和人机交互的专业知识。科学、近同伴指导和共同监督结构将培育社区,并为学员提供广泛的导师网络,涵盖从本科院校到密集研究机构的一系列机构,建立从本科生到教师的培训渠道,IMSI 将改变运动科学。通过为动态肌肉功能和运动的神经肌肉控制建立一个新的基础,整合跨学科、生物体和结构尺度。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Monica Daley其他文献

The effects & mechanisms of increasing running step rate: A feasibility study in a mixed-sex group of runners with patellofemoral pain.
效果
Potential for elastic soft tissue deformation and mechanosensory function within the lumbosacral spinal canal of birds
鸟类腰骶椎管内弹性软组织变形和机械感觉功能的潜力
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Kamska;Monica Daley;Alexander Badri
  • 通讯作者:
    Alexander Badri
A subpopulation of spinocerebellar tract neurons regulates the stability of bipedal stepping
脊髓小脑束神经元亚群调节双足行走的稳定性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baruch Haimson;Y. Hadas;Artur Kania;Monica Daley;Y. Cinnamon;;Tov;A. Klar
  • 通讯作者:
    A. Klar
Spinal dI2 interneurons regulate the stability of bipedal stepping
脊髓 dI2 中间神经元调节双足行走的稳定性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baruch Haimson;Y. Hadas;A. Kania;Monica Daley;Y. Cinnamon;Aharon Lev;A. Klar
  • 通讯作者:
    A. Klar

Monica Daley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Monica Daley', 18)}}的其他基金

Cross-disciplinary innovations in organismal biology through mathematical and physical modeling
通过数学和物理建模实现有机生物学的跨学科创新
  • 批准号:
    2040544
  • 财政年份:
    2021
  • 资助金额:
    $ 1499.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Deconstructing the contributions of muscle intrinsic mechanics to the control of locomotion using a novel Muscle Avatar approach
合作研究:使用新颖的肌肉化身方法解构肌肉内在力学对运动控制的贡献
  • 批准号:
    2016049
  • 财政年份:
    2020
  • 资助金额:
    $ 1499.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Deconstructing the contributions of muscle intrinsic mechanics to the control of locomotion using a novel Muscle Avatar approach
合作研究:使用新颖的肌肉化身方法解构肌肉内在力学对运动控制的贡献
  • 批准号:
    2016049
  • 财政年份:
    2020
  • 资助金额:
    $ 1499.99万
  • 项目类别:
    Standard Grant
BII Design: Integrative Movement Sciences Institute (IMSI)
天地互连设计:综合运动科学研究所(IMSI)
  • 批准号:
    2021832
  • 财政年份:
    2020
  • 资助金额:
    $ 1499.99万
  • 项目类别:
    Standard Grant
Mechanics and energetics of stable bipedal locomotion in uneven terrain: Does a trade-off exist between economy and stability?
不平坦地形中稳定双足运动的力学和能量学:经济性和稳定性之间是否存在权衡?
  • 批准号:
    BB/H005838/1
  • 财政年份:
    2010
  • 资助金额:
    $ 1499.99万
  • 项目类别:
    Research Grant
PostDoctoral Research Fellowship in Biological Informatics FY 2006
2006财年生物信息学博士后研究奖学金
  • 批准号:
    0630664
  • 财政年份:
    2006
  • 资助金额:
    $ 1499.99万
  • 项目类别:
    Fellowship

相似国自然基金

基于外泌体miR-155调控的IRS-1/PI3K/Akt轴探讨知母皂苷BII改善糖尿病肾病的分子机制研究
  • 批准号:
    81903874
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
知母皂苷BII抗痴呆的体内药效物质基础及作用机制研究
  • 批准号:
    81274053
  • 批准年份:
    2012
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

BII: Evolving Meta-Ecosystems in the Arctic
BII:北极不断发展的元生态系统
  • 批准号:
    2320675
  • 财政年份:
    2024
  • 资助金额:
    $ 1499.99万
  • 项目类别:
    Cooperative Agreement
BII: Polyploidy: Integration Across Scales and Biological Systems
BII:多倍体:跨尺度和生物系统的整合
  • 批准号:
    2320251
  • 财政年份:
    2024
  • 资助金额:
    $ 1499.99万
  • 项目类别:
    Cooperative Agreement
BII: Life without water: protecting macromolecules, cells, and organisms during desiccation and rehydration across kingdoms of life
BII:没有水的生命:在生命王国的干燥和补水过程中保护大分子、细胞和生物体
  • 批准号:
    2419923
  • 财政年份:
    2023
  • 资助金额:
    $ 1499.99万
  • 项目类别:
    Cooperative Agreement
BII: Predicting the global host-virus network from molecular foundations
BII:从分子基础预测全球宿主病毒网络
  • 批准号:
    2213854
  • 财政年份:
    2022
  • 资助金额:
    $ 1499.99万
  • 项目类别:
    Cooperative Agreement
BII: INSITE: Institute for Symbiotic Interactions, Teaching, and Education in the Face of a Changing Climate
BII:INSITE:气候变化下的共生互动、教学和教育研究所
  • 批准号:
    2214038
  • 财政年份:
    2022
  • 资助金额:
    $ 1499.99万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了