Collaborative Research: URoL:ASC: Using the Rules of Antibiotic Resistance Development to Inform Wastewater Mitigation Strategies

合作研究:URoL:ASC:利用抗生素耐药性发展规则为废水减排策略提供信息

基本信息

项目摘要

The increased prevalence among bacteria of resistance to antimicrobial drugs (antimicrobial resistance, or AMR) is a critical societal challenge that threatens human, environmental and agricultural health. When antibiotics used to treat bacterial infections are no longer effective, infections last longer and there is increased risk of death. Municipal wastewater treatment plants (WWTPs) are “hotspots” for AMR spread due to the enriched presence of antibiotic residues, antibiotic resistance genes, and antibiotic resistant bacteria. Therefore, WWTPs are a unique system for mitigating AMR spread in the environment. This project investigates the role of different environmental factors, such as temperature, heavy metals, and other contaminants in the development of AMR. The convergent research will conduct field, laboratory, and computational studies to determine when and how susceptible bacterial strains are replaced by more antibiotic-tolerant resistant populations in the natural environment. Knowledge from these studies will facilitate development of predictive models and cost-effective strategies to prevent AMR proliferation in the environment. This project also emphasizes the role of education, poverty, and environmental pollution in AMR spread. Activities will include dissemination of co-produced knowledge beyond the scientific community, through trust-based partnership with farmers, K-12 students, and stakeholders. The minimal selective concentrations (MSC) for antibiotics, at which a resistant strain acquires competitive advantage in growth relative to its susceptible progenitor, are challenging to determine under dynamic natural environmental systems such as WWTPs. In this project, integrated studies using metagenomics, non-target chemical analysis, and machine learning approaches will be conducted to characterize emergence of AMR genotypes and phenotypes within WWTPs. Engineered resistant strains of E. coli will be developed to determine how variations in chemical contaminants affect de novo resistance development and horizontal transfer of resistance genes. To control input of AMR drivers from WWTPs, knowledge is needed to establish appropriate endpoints for mitigating prevalence of AMR. The overall objective is to develop predictive models that describe how AMR emerges and spreads in WWTP activated sludge systems. Machine learning approaches will be used to determine MSC for two test antibiotics, azithromycin and ciprofloxacin, in WWTP activated sludge under varying environmental conditions. The central hypothesis is that temperature, heavy metals, and other contaminants influence the selection of AMR at sub-inhibitory antibiotic concentrations. Our research team will work closely with WWTP engineers and utility workers to ensure that the knowledge gained in this research can be translated into practice effectively.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
抗菌药物耐药性(抗菌素耐药性或 AMR)细菌普遍存在,是威胁人类、环境和农业健康的一项重大社会挑战。当用于治疗细菌感染的抗生素不再有效时,感染会持续更长时间,并且感染率也会增加。由于抗生素残留、抗生素抗性基因和抗生素抗性细菌丰富,城市污水处理厂 (WWTP) 是抗生素耐药性传播的“热点”。该研究预测了不同环境因素(例如温度、重金属和其他污染物)在抗菌素耐药性发展中的作用。该融合研究将进行现场、实验室和计算研究,以确定细菌何时以及如何传播。从这些易感研究中获得的知识将有助于开发预测模型和具有成本效益的策略,以防止环境中的抗菌素耐药性扩散。和环境污染活动将包括通过与农民、K-12 学生和利益相关者基于信任的伙伴关系,在科学界之外传播共同产生的知识。相对于其易受影响的祖先,在动态自然环境系统(例如污水处理厂)下的生长竞争优势很难确定。在该项目中,将使用宏基因组学、非目标化学分析和机器学习方法进行综合研究来描述其出现的特征。将开发污水处理厂内的 AMR 基因型和表型,以确定化学污染物的变化如何影响抗性基因的从头发展和水平转移。为了控制来自污水处理厂的 AMR 驱动因素的输入,需要建立知识。减少 AMR 流行的适当终点是开发预测模型,描述 AMR 在污水处理厂活性污泥系统中如何出现和传播,将用于确定两个的 MSC。在不同环境条件下测试污水处理厂活性污泥中的抗生素、阿奇霉素和环丙沙星。核心假设是温度、重金属和其他污染物会影响亚抑制抗生素浓度下 AMR 的选择。和公用事业工作者,以确保在这项研究中获得的知识能够有效地转化为实践。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和能力进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liqing Zhang其他文献

Approximate maximum likelihood source separation using the natural gradient
使用自然梯度近似最大似然源分离
Comparative Analysis of Motor Imagery on Different Scales Based on Brain Computer Interface
基于脑机接口的不同尺度运动想象对比分析
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junhua Li;Liqing Zhang;MOE
  • 通讯作者:
    MOE
Asymptotic expansion for the trapezoidal Nystro¨m method of linear Volterra-Fredholm equations
线性 Volterra-Fredholm 方程梯形 Nystroöm 方法的渐近展开
Motion Deblurring Using Super-Sparsity
使用超稀疏性进行运动去模糊
  • DOI:
    10.1007/978-3-642-42051-1_27
  • 发表时间:
    2013-11-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingxiong Zhao;H. Zhao;Keting Zhang;Liqing Zhang
  • 通讯作者:
    Liqing Zhang
Transcriptomic study of high‑glucose effects on human skin fibroblast cells.
高葡萄糖对人类皮肤成纤维细胞影响的转录组学研究。
  • DOI:
    10.3892/mmr.2016.4822
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Ling;Youpei Wang;Meiqin Zheng;Qing Wang;Hong Lin;Liqing Zhang;Lingjian Wu
  • 通讯作者:
    Lingjian Wu

Liqing Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liqing Zhang', 18)}}的其他基金

Frameworks: Developing CyberInfrastructure for Waterborne Antibiotic Resistance Risk Surveillance (CI4-WARS)
框架:开发水性抗生素耐药性风险监测网络基础设施 (CI4-WARS)
  • 批准号:
    2004751
  • 财政年份:
    2020
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
III-CXT: Collaborative Research: A High-Throughput Approach to the Assignment of Orthologous Genes Based on Genome Rearrangement
III-CXT:协作研究:基于基因组重排的直系同源基因分配的高通量方法
  • 批准号:
    0710945
  • 财政年份:
    2007
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant

相似国自然基金

PIK3CA突变型尿路上皮癌多细胞生态系统解析及新型免疫治疗策略研究
  • 批准号:
    82372793
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
脊髓损伤后C纤维异常激活致尿路上皮损伤修复紊乱增加下尿路感染复发风险的机制研究
  • 批准号:
    82370767
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多层次解析肿瘤微环境驱动尿路上皮癌可塑性及药物反应研究
  • 批准号:
    82341030
  • 批准年份:
    2023
  • 资助金额:
    150 万元
  • 项目类别:
    专项基金项目
GAS6通过纤维血管轴心的维持促进乳头状尿路上皮癌复发的分子机制研究
  • 批准号:
    82303339
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
转胶蛋白TAGLN通过调节上皮间质转化促进尿路上皮癌进展转移的机制研究
  • 批准号:
    82372951
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319125
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319124
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Using the Rules of Antibiotic Resistance Development to Inform Wastewater Mitigation Strategies
合作研究:URoL:ASC:利用抗生素耐药性发展规则为废水减排策略提供信息
  • 批准号:
    2319520
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Using the Rules of Antibiotic Resistance Development to Inform Wastewater Mitigation Strategies
合作研究:URoL:ASC:利用抗生素耐药性发展规则为废水减排策略提供信息
  • 批准号:
    2319521
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了