Reconfigurable Diffractive Optical Neural Networks with Phase Change Material based Photonic Device
具有基于相变材料的光子器件的可重构衍射光学神经网络
基本信息
- 批准号:2316627
- 负责人:
- 金额:$ 37.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Diffractive optical neural networks (DONNs) systems have gained interest as high-performance optical architectures to perform machine learning tasks. Toward the ideal DONNs systems, there is a lack of energy-efficient diffractive pixel unit and accurate software models. This project employs one type of nonvolatile material called phase change material (PCM) and address two major challenges, substantial switching energy and multilevel operations, to develop PCM-based diffractive devices. This project also develops an accurate model by incorporating interlayer and intralayer effects. The research findings from this project can find broad photonic and optoelectronic applications, such as in communication, computation, and quantum technologies. This project also expands participation in science, technology, engineering, and math (STEM) through training and education activities in the laboratory, classroom, and through outreach programs. The goal of these activities is to develop a diverse future STEM workforce.DONNs systems perform machine learning tasks through spatial light modulation and optical diffraction in multiple diffractive layers. However, toward the implementation of the ultimate all-optical, fully reconfigurable, and compact diffractive layers for DONNs systems, there exist technological gaps including nonvolatile reconfigurability, and accurate and trainable software models. To fill these gaps, this project employs nonvolatile chalcogenide PCMs that feature a few desirable properties, such as in-memory computing, large optical contrast, and ultrafast reconfiguration with high cyclability, to construct a near-infrared diffractive device for DONNs systems. This project aims to address following challenges, including large reconfiguration energy consumption and multilevel operation for implementing PCM-based photonic devices, as well as the discrepancy between the standard DONNs model and the compact DONNs system with PCM-based diffractive devices. Specifically, this project creates an energy-efficient and transparent electrical heater for reconfiguring PCMs using aligned carbon nanotube films with extraordinary and separately optimizable electrical, thermal, and optical properties. This project also designs, optimizes, and fabricates a multilevel reconfigurable device by only using two reliable crystalline and amorphous states in multiple PCM films. In addition, this project implements accurate and trainable DONNs models by incorporating the effects of interlayer reflection and intralayer interpixel interaction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
衍射光学神经网络 (DONN) 系统作为执行机器学习任务的高性能光学架构而引起了人们的兴趣。对于理想的 DONNs 系统,缺乏节能的衍射像素单元和准确的软件模型。该项目采用一种称为相变材料 (PCM) 的非易失性材料,并解决两个主要挑战:大量开关能量和多级操作,以开发基于 PCM 的衍射器件。该项目还通过结合层间和层内效应开发了一个精确的模型。该项目的研究成果可以找到广泛的光子和光电应用,例如通信、计算和量子技术。该项目还通过实验室、课堂的培训和教育活动以及外展计划扩大对科学、技术、工程和数学 (STEM) 的参与。这些活动的目标是培养多样化的未来 STEM 劳动力。DONN 系统通过空间光调制和多个衍射层中的光学衍射来执行机器学习任务。然而,为了实现 DONN 系统的最终全光学、完全可重构和紧凑的衍射层,还存在技术差距,包括非易失性可重构性以及准确和可训练的软件模型。为了填补这些空白,该项目采用非易失性硫族化物 PCM 来构建用于 DONN 系统的近红外衍射器件,该 PCM 具有一些理想的特性,例如内存计算、大光学对比度和具有高循环能力的超快重构。该项目旨在解决以下挑战,包括实现基于 PCM 的光子器件的大量重构能耗和多级操作,以及标准 DONNs 模型和带有基于 PCM 衍射器件的紧凑 DONNs 系统之间的差异。具体来说,该项目创建了一种节能且透明的电加热器,用于使用具有非凡且可单独优化的电、热和光学性能的对齐碳纳米管薄膜来重新配置 PCM。该项目还通过在多个 PCM 薄膜中仅使用两种可靠的晶态和非晶态来设计、优化和制造多级可重构器件。此外,该项目通过结合层间反射和层内像素间相互作用的影响,实现了准确且可训练的 DONN 模型。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weilu Gao其他文献
Wafer-scale, full-coverage, acoustic self-limiting assembly of particles on flexible substrates
柔性基板上颗粒的晶圆级、全覆盖、声学自限性组装
- DOI:
- 发表时间:
2021-10-31 - 期刊:
- 影响因子:0
- 作者:
Liang Zhao;Bchara Sidnawi;Jichao Fan;Ruiyang Chen;T. Scully;S. Dietrich;Weilu Gao;Qianhong Wu;Bo Li - 通讯作者:
Bo Li
Multi-Task Learning in Diffractive Deep Neural Networks via Hardware-Software Co-design
通过软硬件协同设计在衍射深度神经网络中进行多任务学习
- DOI:
10.48550/arxiv.2211.02729 - 发表时间:
2020-12-16 - 期刊:
- 影响因子:0
- 作者:
Yingjie Li;Ruiyang Chen;B. S. Rodriguez;Weilu Gao;Cunxi Yu - 通讯作者:
Cunxi Yu
Universal Approach for Calibrating Large‐Scale Electronic and Photonic Crossbar Arrays
校准大规模电子和光子交叉阵列的通用方法
- DOI:
10.1002/aisy.202300147 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:7.4
- 作者:
Jichao Fan;Yingheng Tang;Weilu Gao - 通讯作者:
Weilu Gao
Groove-Assisted Global Spontaneous Alignment of Carbon Nanotubes in Vacuum Filtration.
真空过滤中碳纳米管的凹槽辅助全局自发排列。
- DOI:
10.1021/acs.nanolett.9b04764 - 发表时间:
2019-12-24 - 期刊:
- 影响因子:10.8
- 作者:
Natsumi Komatsu;Motonori Nakamura;Saunab Ghosh;Daeun Kim;Haoze Chen;A. Katagiri;Yohei Yomogida;Weilu Gao;K. Yanagi;J. Kono - 通讯作者:
J. Kono
Outcoupling Hyperbolic Modes from Aligned Carbon Nanotube Films
定向碳纳米管薄膜的双曲模式外耦合
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Bryant Jerome;Ciril S. Prasad;Jacques Doumani;O. Dewey;A. Baydin;M. Pasquali;J. Kono;Weilu Gao;A. Alabastri;G. Naik - 通讯作者:
G. Naik
Weilu Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weilu Gao', 18)}}的其他基金
Excitonic electroabsorption effects in macroscopically aligned carbon nanotubes
宏观排列碳纳米管中的激子电吸收效应
- 批准号:
2321366 - 财政年份:2023
- 资助金额:
$ 37.48万 - 项目类别:
Standard Grant
FuSe-TG: Co-Design of Chiral Quantum Photonic Devices and Circuits Integrated with 2D Material Heterostructures
FuSe-TG:手性量子光子器件和与二维材料异质结构集成的电路的协同设计
- 批准号:
2235276 - 财政年份:2023
- 资助金额:
$ 37.48万 - 项目类别:
Standard Grant
相似国自然基金
基于锐边衍射的远场纳米光学尺研究
- 批准号:12304358
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
湍流大气信道下轨道角动量编码量子密钥分发的态依赖衍射及自适应光学校正
- 批准号:62301530
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
智能液晶超结构材料的精准构筑、动态调控及衍射光学器件研究
- 批准号:62375119
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于超长无衍射Bessel光束的光学体成像技术研究
- 批准号:62375183
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
光学衍射层析辅助的自适应超分辨单分子定位显微镜研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
FET: Small: LightRidge: End-to-end Agile Design for Diffractive Optical Neural Networks
FET:小型:LightRidge:衍射光神经网络的端到端敏捷设计
- 批准号:
2321404 - 财政年份:2023
- 资助金额:
$ 37.48万 - 项目类别:
Continuing Grant
ERI: Sub-diffractive Optical Trapping Enabled by Deep-Learning-Assisted Metasurface Design
ERI:深度学习辅助超表面设计实现次衍射光捕获
- 批准号:
2138869 - 财政年份:2022
- 资助金额:
$ 37.48万 - 项目类别:
Standard Grant
Analysis of Diffractive Properties Based on Nonlinear Optical Effect of Dye-Doped Liquid Crystals
基于染料掺杂液晶非线性光学效应的衍射特性分析
- 批准号:
20J14875 - 财政年份:2020
- 资助金额:
$ 37.48万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of flexible polymer diffractive optical components for Augmented Reality projection displays
开发用于增强现实投影显示器的柔性聚合物衍射光学元件
- 批准号:
2774517 - 财政年份:2019
- 资助金额:
$ 37.48万 - 项目类别:
Studentship
QuDOS II: Quantum technologies using Diffractive Optical Structures (Phase II)
QuDOS II:使用衍射光学结构的量子技术(第二阶段)
- 批准号:
132530 - 财政年份:2017
- 资助金额:
$ 37.48万 - 项目类别:
Feasibility Studies