ACED Fab: On-chip CMOS-MEMS Infrared Spectroscopy Systems
ACED Fab:片上 CMOS-MEMS 红外光谱系统
基本信息
- 批准号:2314932
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Metabolites, gases, and many chemicals are structurally unique and exhibit distinctive absorptive fingerprints in the infrared spectrum band. The accurate detection and tracking of such spectrum using portable devices carry enormous potential and would enable many applications, including real-time health monitoring, gas detection, spectroscopy, imaging, the identification of hazardous materials, etc. Common infrared spectrometers rely on Fourier Transform system (FTIR) that are bulky, expensive, incompatible with integrated circuits, and unsuitable for real-life applications. Here, rooted on a synergetic collaborative effort between U.S. and Taiwan groups, an on-chip infrared spectroscopy system operating at room temperature and able to scan from ~ 1.5μm to 10 μm using a large number of channels will be demonstrated. The system relies on the integration of an array of miniaturized and spectrally-selective infrared sensors fabricated in the US, and CMOS chips fabricated in Taiwan that implement state of the art noise-suppression and interrogation techniques. The proposed on-chip infrared spectroscopy platform constitutes a significant step forward in the field of infrared technologies, moving beyond bulky and expensive Fourier Transform-based spectrometers into miniaturized, affordable, and mass-production ready devices. The potential applications enabled by such systems include sensing, communications, imaging, and spectroscopy, among many others. On the educational front, this project will provide multidisciplinary training to graduate and undergraduate students on a variety of scientific areas such as CMOS technologies, infrared sensing, mechanical resonators, metamaterials, and device fabrication and characterization; integrate research results with education activities, including the incorporation of research content in graduate courses and its broad dissemination through journal papers and scientific conferences; and encourage the participation and retention of women and Hispanic students - the PIs can serve as role model- in STEM and research. Moving beyond, this program will foster the collaboration between US and Taiwan researchers and set the foundations for long-term partnerships and scientific interactions. The goal of this project is to demonstrate an on-chip infrared spectroscopy system able to scan from ~ 1.5μm to 10 μm using a massive number of parallel channels while exhibiting a performance able to surpass competing technologies operating at room temperature. To this purpose, a large array spectrally-selective infrared sensors will be fabricated on a single chip at the UC Davis cleanroom, whereas RF interrogating and noise-suppression schemes will be implemented on a CMOS chip that will be fabricated at the Taiwan Semiconductor Research Institute (TSRI). Heterogeneous integration and packaging will also be carried out at the TSRI. The key building-block is an infrared detector based on nano-patterning ultrathin and high-Q metasurfaces on top of free-space standing microelectromechanical systems (MEMSs) to efficiently absorb light with desired spectral distribution. Each MEMS, designed to achieve a high mechanical quality factor and to absorb targeted wavelengths, will be excited at resonance by a RF signal whose phase and amplitude changes with the absorbed infrared power. To enhance the system performance, the detector will include two MEMS per released cavity, one serving as the reference and the other as the sensor. Exploiting I/Q signals for reference/sensing paths, the phase/amplitude variations of both units will be obtained and processed to highly suppress common mode and environmental noises (electrical, mechanical, optical, thermal) as well as the electronic readout circuit noises and non-idealities. In addition to significant noise reduction, the use of CMOS technology will permit to interrogate simultaneously a larger array of parallel sensors on a chip, and to multiplex their signals towards an output channel. This program will lay the foundational groundwork and demonstrate miniaturized, ultra-sensitive, low-noise, on-chip IR spectroscopy systems able to compete with state-of-the-art FTIR technologies operating at room temperature while strengthening the partnership and scientific interactions between USA and Taiwan.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代谢物、气体和许多化学物质在结构上是独特的,并且在红外光谱带中表现出独特的吸收指纹,使用便携式设备对此类光谱进行精确检测和跟踪具有巨大的潜力,并将实现许多应用,包括实时健康监测、气体检测。 、光谱、成像、有害物质识别等。常见的红外光谱仪依赖于傅里叶变换系统(FTIR),该系统体积大、价格昂贵、与集成电路不兼容,不适合实际应用。在这里,基于美国和台湾团体之间的协同合作,将展示一种在室温下运行并能够使用大量通道扫描约 1.5μm 至 10μm 的片上红外光谱系统。集成了美国制造的一系列微型光谱选择性红外传感器和台湾制造的 CMOS 芯片,可实现最先进的噪声抑制和询问所提出的片上红外光谱平台是红外技术领域向前迈出的重要一步,超越了笨重且昂贵的基于傅立叶变换的光谱仪,成为小型化、经济实惠且可大规模生产的设备。系统包括传感、通信、成像和光谱学等。在教育方面,该项目将为研究生和本科生提供 CMOS 技术、红外传感、机械等各种科学领域的多学科培训。谐振器、超材料以及设备制造和表征;将研究成果与教育活动相结合,包括将研究内容纳入研究生课程并通过期刊论文和科学会议进行广泛传播;并鼓励女性和西班牙裔学生的参与和保留;除此之外,该项目还将促进美国和台湾研究人员之间的合作,并为长期合作和科学互动奠定基础。芯片红外光谱系统能够使用大量并行通道扫描约 1.5μm 至 10μm,同时表现出超越室温下运行的竞争技术的性能。为此,将在其上制造大型阵列光谱选择性红外传感器。加州大学戴维斯分校洁净室的单个芯片,而射频询问和噪声抑制方案将在台湾半导体研究所制造的 CMOS 芯片上实现(TSRI) 还将在 TSRI 进行异质集成和封装,其关键构建模块是基于自由空间微机电系统 (MEMS) 之上的纳米图案化超薄和高 Q 超表面。有效吸收具有所需光谱分布的光。每个 MEMS 旨在实现高机械品质因数并吸收目标波长,将被射频信号激发谐振,射频信号的相位和幅度随吸收的变化而变化。为了增强系统性能,探测器的每个释放腔将包含两个 MEMS,一个用作参考,另一个用作传感器,利用 I/Q 信号作为参考/传感路径,以及两个单元的相位/幅度变化。将获得并处理以高度抑制共模和环境噪声(电气、机械、光学、热)以及电子读出电路噪声和非理想性。除了显着降低噪声之外,CMOS 技术的使用还允许同时询问芯片上更大的并行传感器阵列,并将其信号复用到输出通道。该程序将奠定基础,并展示能够竞争的小型化、超灵敏、低噪声片上红外光谱系统。采用在室温下运行的最先进的 FTIR 技术,同时加强美国和台湾之间的伙伴关系和科学互动。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Sebastian Gomez Diaz其他文献
Juan Sebastian Gomez Diaz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Sebastian Gomez Diaz', 18)}}的其他基金
CAREER: Breaking and engineering reciprocity in magnetless THz and IR devices using 2D materials
职业:使用 2D 材料在无磁太赫兹和红外设备中破坏和设计互易性
- 批准号:
1749177 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于分子印迹识别的 Fab 小分子抗体分离新方法研究
- 批准号:21808150
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于抗体Fab片段特异性识别多肽配基的体内Infliximab精准富集策略研究
- 批准号:81703460
- 批准年份:2017
- 资助金额:20.1 万元
- 项目类别:青年科学基金项目
Anti-CD26Fab-miR-29b-金纳米复合物抑制皮肤创口愈合过程中胶原合成的实验研究
- 批准号:81700947
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于定向固定抗体Fab片段的免疫层析技术同时检测中药中多种真菌毒素的研究
- 批准号:81660660
- 批准年份:2016
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
抗LMP1抗体抑制鼻咽癌肿瘤干细胞的作用及机制研究
- 批准号:81502673
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ACED Fab: Ultrafast, low-power AI chip with a new class of MRAM for learning and inference at edge
ACED Fab:超快、低功耗 AI 芯片,配备新型 MRAM,用于边缘学习和推理
- 批准号:
2314591 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Functional genomics resources for the Drosophila - TR&D3
果蝇功能基因组学资源 - TR
- 批准号:
10436795 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Building a MEMS-based Fab-on-a-Chip as a Technique for Nanomanufacturing
构建基于 MEMS 的片上工厂作为纳米制造技术
- 批准号:
1361948 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Gonococcal Infection and Gene Expression in Female Mice
雌性小鼠淋球菌感染和基因表达
- 批准号:
7423890 - 财政年份:1999
- 资助金额:
$ 50万 - 项目类别: