Collaborative Research: Interfacial Self-healing of Nanocomposite Hydrogels
合作研究:纳米复合水凝胶的界面自修复
基本信息
- 批准号:2314424
- 负责人:
- 金额:$ 23.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Self-healing polymers are synthetic materials capable of autonomously repairing damages without human intervention. They have shown great potentials for sustainable technologies in diverse engineering applications, including artificial muscles and skins, flexible electronics, soft robotics and many others. Nevertheless, the state-of-the-art design of self-healing polymers remains at the trial-and-error stage with insufficient theoretical guidance. This award supports fundamental research to elucidate the self-healing mechanics of nanocomposite hydrogels that consist of water-mediated polymer networks crosslinked by nanoparticles. The knowledge obtained from this project will provide mechanistic insights into self-healing polymers that are able to restore their functionality after damage. The research will not only promote the fundamental science of self-healing mechanics, but also advance the national health, prosperity, and welfare through further development and enhancement of soft-materials based sustainable technologies. This project will also train a diverse group of students in the areas of solid mechanics, polymer science, mechanical engineering, and high-performance computing for next-generation workforce development. The educational objectives of the project will be realized through curriculum development, undergraduate research opportunities, summer research program for high school students, research experience for K-12 teachers program, and K-12 outreach program. Special efforts will be made to involve underrepresented students in this project. Despite extensive studies in the syntheses and applications of self-healing polymers, constructing the mechanistic relationship between self-healing properties and material/healing settings remains challenging. The key technical barrier is how to physically model the microstructure evolution of the polymer networks during the self-healing process. The central hypothesis of this project is that the self-healing strength of nanocomposite hydrogel is governed by the diffusion of polymer chains across the fractured interface and subsequent crosslinks formed with nanoparticles. To test this hypothesis, the project integrates molecular dynamics simulations and analytical theories to study microscopic diffusion-reaction behaviors of polymer chains during self-healing process and macroscopic interfacial strengths after self-healing. The computational and theoretical predictions will be systematically validated with experimental studies of nanocomposite hydrogels composed of several material compositions, such as particle concentration, particle size, and water fraction, and under various external healing controls, such as temperature and delaying time. The interdisciplinary effort will open promising avenues for quantitatively understanding the multiscale mechanics of self-healing polymers and providing fundamental design principles of high-performance self-healing polymers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自修复聚合物是能够在无需人工干预的情况下自主修复损伤的合成材料。它们在各种工程应用中展示了可持续技术的巨大潜力,包括人造肌肉和皮肤、柔性电子产品、软机器人等。然而,最先进的自修复聚合物设计仍处于试错阶段,缺乏足够的理论指导。该奖项支持基础研究,以阐明纳米复合水凝胶的自修复机制,该水凝胶由纳米粒子交联的水介导的聚合物网络组成。从该项目中获得的知识将为自修复聚合物提供机制见解,这些聚合物能够在损坏后恢复其功能。该研究不仅将促进自愈力学的基础科学发展,还将通过进一步开发和增强基于软材料的可持续技术来促进国民健康、繁荣和福利。该项目还将在固体力学、聚合物科学、机械工程和高性能计算领域培训多元化的学生,以促进下一代劳动力的发展。该项目的教育目标将通过课程开发、本科生研究机会、高中生暑期研究计划、K-12教师研究经验计划和K-12外展计划来实现。我们将特别努力让代表性不足的学生参与该项目。尽管对自修复聚合物的合成和应用进行了广泛的研究,但构建自修复特性与材料/修复设置之间的机械关系仍然具有挑战性。关键的技术障碍是如何对自修复过程中聚合物网络的微观结构演化进行物理建模。该项目的中心假设是,纳米复合水凝胶的自愈强度取决于聚合物链穿过断裂界面的扩散以及随后与纳米颗粒形成的交联。为了验证这一假设,该项目整合了分子动力学模拟和分析理论,研究自修复过程中聚合物链的微观扩散反应行为以及自修复后的宏观界面强度。计算和理论预测将通过由多种材料成分(例如颗粒浓度、颗粒尺寸和水分数)组成的纳米复合水凝胶的实验研究以及在各种外部愈合控制(例如温度和延迟时间)下得到系统验证。这项跨学科的努力将为定量理解自修复聚合物的多尺度力学开辟有希望的途径,并提供高性能自修复聚合物的基本设计原理。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,被认为值得支持。智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interplay between entanglement and crosslinking in determining mechanical behaviors of polymer networks
缠结和交联之间的相互作用在确定聚合物网络的机械行为中
- DOI:10.1080/19475411.2023.2261777
- 发表时间:2023-09-29
- 期刊:
- 影响因子:3.9
- 作者:Yuhao Liu;Weikang Xian;Jinlong He;Ying Li
- 通讯作者:Ying Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Li其他文献
Cytotoxicity of six copper-bearing intrauterine devices on Chinese hamster ovary cells: the influence of frame, shape and copper surface area
六种含铜宫内节育器对中国仓鼠卵巢细胞的细胞毒性——框架、形状和铜表面积的影响
- DOI:
10.7669/j.issn.1001-7844.2015.03.0160 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:0
- 作者:
Tong Chen;Ying Li;Wenli Zhang;Weisai Zhou;Shuangshuang Zhang;Jianping Liu - 通讯作者:
Jianping Liu
Evaluation of the Thermal Properties of Kermel and PBO Fibres
Kermel 和 PBO 纤维的热性能评估
- DOI:
10.1108/rjta-16-01-2012-b010 - 发表时间:
2012-02-01 - 期刊:
- 影响因子:0
- 作者:
Xiaoyan Liu;Wei;Yu;Xiao;Ying Li - 通讯作者:
Ying Li
Effect of magnetic field on phase morphology transformation of MnO2 nanostructures in a hydrothermal process
水热过程中磁场对MnO2纳米结构相形变的影响
- DOI:
10.1002/pssc.201084200 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Mingyuan Zhu;Ye;Ying Li;H. Jin;Zhenzhen Zhu - 通讯作者:
Zhenzhen Zhu
Multi-modal diffeomorphic demons registration based on mutual information
基于互信息的多模态微分同胚配准
- DOI:
10.1109/bmei.2011.6098472 - 发表时间:
2011-12-12 - 期刊:
- 影响因子:0
- 作者:
Ying Li;Yonggang Shi;Fa Jie;Zhiwen Liu;Yong Yuan - 通讯作者:
Yong Yuan
Variation of optimum yttrium doping concentrations of perovskite type proton conductors BaZr1−xYxO3−α (0≤x≤0.3) with temperature
钙钛矿型质子导体BaZr1−xYxO3−α (0≤x≤0.3)最佳钇掺杂浓度随温度的变化
- DOI:
10.1016/s1002-0721(13)60023-x - 发表时间:
2013-10-01 - 期刊:
- 影响因子:4.9
- 作者:
Yu;Ying Li;Wenzhuo Deng;Wenlong Huang;C. Wang - 通讯作者:
C. Wang
Ying Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Li', 18)}}的其他基金
CLIMA/Collaborative Research: Discovery of Covalent Adaptable Networks for Sustainable Manufacturing and Recycling of Wind Turbine Blades
CLIMA/合作研究:发现用于风力涡轮机叶片可持续制造和回收的共价适应性网络
- 批准号:
2332276 - 财政年份:2024
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 23.36万 - 项目类别:
Continuing Grant
PFI-TT: Scalable Manufacturing of Novel Catalysts for Converting CO2 to Valuable Products
PFI-TT:可规模化生产将二氧化碳转化为有价值产品的新型催化剂
- 批准号:
2326072 - 财政年份:2023
- 资助金额:
$ 23.36万 - 项目类别:
Continuing Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2205007 - 财政年份:2022
- 资助金额:
$ 23.36万 - 项目类别:
Continuing Grant
CRII: OAC: A Hybrid Finite Element and Molecular Dynamics Simulation Approach for Modeling Nanoparticle Transport in Human Vasculature
CRII:OAC:一种混合有限元和分子动力学模拟方法,用于模拟人体脉管系统中纳米颗粒的传输
- 批准号:
2326802 - 财政年份:2022
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
Unraveling Mechanics of High Strength and Low Stiffness in Polymer Nanocomposites through Integrated Molecular Modeling and Nanomechanical Experiments
通过集成分子建模和纳米力学实验揭示聚合物纳米复合材料的高强度和低刚度力学
- 批准号:
2316200 - 财政年份:2022
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
- 批准号:
2153894 - 财政年份:2022
- 资助金额:
$ 23.36万 - 项目类别:
Continuing Grant
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
- 批准号:
2313754 - 财政年份:2022
- 资助金额:
$ 23.36万 - 项目类别:
Continuing Grant
CAREER: Machine Learned Coarse-grained Modeling for Mechanics of Thermoplastic Elastomers
职业:热塑性弹性体力学的机器学习粗粒度建模
- 批准号:
2323108 - 财政年份:2022
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
CRII: OAC: A Hybrid Finite Element and Molecular Dynamics Simulation Approach for Modeling Nanoparticle Transport in Human Vasculature
CRII:OAC:一种混合有限元和分子动力学模拟方法,用于模拟人体脉管系统中纳米颗粒的传输
- 批准号:
2326802 - 财政年份:2022
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
相似国自然基金
薄壁窄缝通道内壁面沸腾机理及相界面浓度输运机制研究
- 批准号:52306194
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多层级增强B4C/6082Al复合材料背压往复挤压-短时时效界面行为及服役性能提升机理研究
- 批准号:52375329
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
低共熔溶剂与水二元体系从超浓电解液到稀水溶液转变过程中的界面结构及反应动力学研究
- 批准号:22372140
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
沥青/集料界面作用的微纳尺度原理与跨尺度构效关系研究
- 批准号:52308448
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高速逆流色谱仪相界面转捩诱发机制及其管道结构参数评估模型研究
- 批准号:52305272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323023 - 财政年份:2023
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
Collaborative Research: Interfacial Phenomena of Functional Solutes Impregnated into Cellulose Packaging Substrates
合作研究:功能性溶质浸渍纤维素包装基材的界面现象
- 批准号:
2322501 - 财政年份:2023
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
Collaborative Research: Interfacial Phenomena of Functional Solutes Impregnated into Cellulose Packaging Substrates
合作研究:功能性溶质浸渍纤维素包装基材的界面现象
- 批准号:
2322502 - 财政年份:2023
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323022 - 财政年份:2023
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant
Collaborative Research: Controlling the properties of oxide-encapsulated metals for interfacial catalysis
合作研究:控制氧化物封装金属的界面催化性能
- 批准号:
2311986 - 财政年份:2023
- 资助金额:
$ 23.36万 - 项目类别:
Standard Grant