Collaborative Research: Learning-Assisted Estimation and Management of Flexible Energy Resources in Active Distribution Networks

合作研究:主动配电网络中灵活能源的学习辅助估计和管理

基本信息

  • 批准号:
    2313768
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This NSF project aims to develop novel learning-based approaches for estimating the flexibility amount of grid edge resources (GERs), such as solar, solar and storage, or smart thermostat, and then design equitable resource coordination and management methods based on multi-agent and distributed optimization approaches. The project will bring transformative changes to the area of GER management in distribution electricity networks by combining machine learning (ML) and artificial intelligence (AI) with the physics-based models of such resources for estimating geo-spatial flexibility at the grid level according, and also by developing a multi-time scale distributed optimization method for GERs coordination to provide grid services. The outcome of this project is expected to have significant impacts on grid reliability and resilience, while providing customers with new financial and monetary opportunities. The intellectual merits of the project include new hybrid physics-based/data-driven flexibility estimation methods for GERs along with their uncertainties, and creation of configurable, multi-time scale, distributed optimization for providing fast and slow grid services according to the customers’ computation and communication capabilities. The broader impacts of the project include integrating educating the public through print media, broadcast news, and the Internet, and providing educational and research opportunities for underrepresented students.This project will advance management of flexible energy resources of distribution grids in the following four directions. The first direction will be in utilizing generative ML techniques and leveraging spatial, temporal, and channel-wise information from nearby observable behind-the-meter (BTM) solar and storage assets to address data gaps. This approach enhances the estimation of availability and flexibility of these BTM units. The second direction will be in developing a geo-spatial flexibility estimation method that improves the characterization of smart thermostat loads. This method combines physics-based and data-driven models to obtain expected power and energy adjustments and associated uncertainties. The third direction will be in building a configurable multi-time scale distributed coordination framework to package BTM flexibilities as fast and slow grid services. Enabling end-use customers to provide multi-time scale grid services increases power system resilience and boosts customer revenue. The final direction will be in facilitating participation of underserved customers by accounting for their computation and communication limitations in multi-agent coordination procedure. This advancement will better distribute societal welfare and unlock potentials of underutilized BTM assets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 NSF 项目旨在开发新颖的基于学习的方法来估计电网边缘资源(GER)的灵活性量,例如太阳能、太阳能和存储或智能恒温器,然后设计基于多智能体的公平资源协调和管理方法该项目将通过将机器学习 (ML) 和人工智能 (AI) 与此类资源的基于物理的模型相结合来估计地理空间,从而为配电网的 GER 管理领域带来变革。网格级别的灵活性根据,并通过多时间尺度分布式优化方法进行 GER 协调以提供电网服务,预计该项目的成果将对电网可靠性和弹性产生重大影响,同时为客户提供新的财务和货币机会。该项目的内容包括针对 GER 及其不确定性的新的基于物理/数据驱动的混合灵活性估计方法,以及创建可配置的、多时间尺度的分布式优化,以便根据客户的计算和通信提供快速和慢速的网格服务项目的更广泛影响。包括通过印刷媒体、广播新闻和互联网整合教育公众,并为代表性不足的学生提供教育和研究机会。该项目将在以下四个方向推进配电网灵活能源的管理。第一个方向是。利用生成式机器学习技术并利用附近可观测的表后 (BTM) 太阳能和存储资产的空间、时间和通道信息来解决数据缺口问题。方向将是发展一种地理空间灵活性估计方法,可改善智能恒温器负载的表征。该方法结合了基于物理和数据驱动的模型,以获得预期的功率和能量调整以及相关的不确定性。规模分布式协调框架将 BTM 灵活性打包为快速和慢速电网服务,使最终用户能够提供多时间规模的电网服务,从而提高电力系统的弹性并增加客户收入。为了这一进步将更好地分配社会福利并释放未充分利用的 BTM 资产的潜力。该奖项反映了奖项的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持。审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Javad Mohammadi其他文献

Introduction
介绍
An investigation into cutting fluid additives performance during machining processing of Ti-6Al-4V
Ti-6Al-4V切削液添加剂性能研究
Self-assembling of graphene oxide on carbon quantum dot loaded liposomes.
氧化石墨烯在碳量子点负载脂质体上的自组装。
Composite of porous starch-silk fibroin nanofiber-calcium phosphate for bone regeneration
用于骨再生的多孔淀粉-丝素纳米纤维-磷酸钙复合材料
  • DOI:
    10.1016/j.ceramint.2015.05.010
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Zhina Hadisi;Jhamak Nourmohammadi;Javad Mohammadi
  • 通讯作者:
    Javad Mohammadi
Folate gene polymorphisms CBS 844ins68 and RFC1 A80G and risk of Down syndrome offspring in young Iranian women: A cross-sectional study
叶酸基因多态性 CBS 844ins68 和 RFC1 A80G 与伊朗年轻女性患唐氏综合症后代的风险:一项横断面研究

Javad Mohammadi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于可变Petri网的RPA流程学习和优化方法研究
  • 批准号:
    62302306
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向层次化视觉数据的双曲学习方法研究
  • 批准号:
    62306070
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会学习视角下旅游社区灾害韧性的特征、建设机制与实践路径研究
  • 批准号:
    42301271
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
异构环境感知的联邦学习方法研究
  • 批准号:
    62302522
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习与蒙特卡罗算法的在线质子自适应放疗方法研究
  • 批准号:
    12375359
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324936
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324937
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
  • 批准号:
    2342748
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了