ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity

ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器

基本信息

  • 批准号:
    2313755
  • 负责人:
  • 金额:
    $ 39.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

This is a joint effort between a U.S. University (Buffalo) and two U.K. Universities (Cambridge and Oxford).Effectively detecting low dose rates of radiation is critical for improving the safety and capability of non-invasive diagnostics, including medical imaging, nuclear security, and product inspection. However, current industry-standard materials (namely amorphous selenium and cadmium zinc telluride) have limited ability to detect X-rays, such that the current medical standard X-ray dose rate is a very high value, and this increases the risk of causing cancer. To improve the safety of medical imaging, as well as to improve the effectiveness of a wide range of other diagnostics involving ionizing radiation, it is essential to engineer new materials capable of detecting lower dose rates of radiation, with stable performance under operation. The collaborative project between the US team (University at Buffalo) and the UK team (University of Oxford and University of Cambridge) is to develop a new generation of cost-effective bismuth-based radiation detectors capable of detecting three orders of magnitude lower dose rates than the current commercial standard. The project will directly address the critical challenge of engineering the materials and the manufacturability for high-performing, operationally stable radiation detectors. The broader technological impacts of this project are built on collaborations with industry and a US national laboratory. Furthermore, the research program is well integrated with education and outreach programs at all three universities, including: 1) training the future workforce with multidisciplinary research skills in an international research environment; 2) implementing cutting-edge research in novel materials and devices in materials science and engineering curricula through teaching; 3) disseminating research findings to broader audiences through outreach programs; and 4) increasing diversity and broad participation of under-represented minority groups from local communities, contributing to strengthening and expanding the future STEM workforce in both US and UK and enhancing society awareness of development of state-of-the-art radiation detection technology.Significantly improved performance of radiation detectors has recently been achieved with lead-halide perovskite single crystals. However, the high lead (Pb) content exceeds the maximum limit set in many jurisdictions (including in the US and UK), and the facile ionic conductivity in these materials limits the range of electric fields that can be applied, thus limiting their operational stability. This proposal will address the challenges of current X-ray detectors, including the use of toxic elements, limited performance, high manufacturing costs, and limited charge-carrier transport. Our preliminary results have shown that BiOI can be the ideal non-toxic alternative to the Pb-based perovskites for next generation radiation detectors with ultrahigh detectivity because of its heavy elements, large mobility-lifetime products, and high resistivities. To transfer this technology to industry and to have an impact on medical imaging and nuclear security, we will further 1) improve the mobility-lifetime product to well above 6±2 x 10-2 cm2 V-1 s-1 through compositional engineering, 2) increase the size of the detectors by an order of magnitude (from 5 mm currently) without compromising on performance, and 3) optimize the device architecture and imaging performance. The overall aim of this joint research between US team (University at Buffalo) and the UK team (University of Oxford and University of Cambridge) is to develop a new generation of cost-effective, stable and up-scaled bismuth-based radiation detectors capable of detecting three orders of magnitude lower dose rates than the current commercial standard.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是美国大学(布法罗)和两所英国大学(剑桥和牛津)的共同努力。有效检测低剂量率辐射对于提高非侵入性诊断的安全性和能力至关重要,包括医学成像、核安全、然而,目前的行业标准材料(即非晶硒和碲化镉锌)检测X射线的能力有限,使得目前的医疗标准X射线剂量。率是一个非常高的值,这增加了导致癌症的风险。为了提高医学成像的安全性,以及提高涉及电离辐射的其他广泛诊断的有效性,必须设计具有这种能力的新材料。美国团队(布法罗大学)和英国团队(牛津大学和剑桥大学)的合作项目是开发新一代具有成本效益的铋。基于辐射探测器能够探测该项目的剂量率比当前商业标准低三个数量级,将直接解决高性能、运行稳定的辐射探测器的材料设计和可制造性的关键挑战。此外,该研究项目与所有三所大学的教育和推广项目完美结合,包括:1)在国际研究环境中培养具有多学科研究技能的未来劳动力;2)实施前沿研究。在新材料和设备中材料科学和工程课程;3)通过推广计划向更广泛的受众传播研究成果;4)增加当地社区中代表性不足的少数群体的多样性和广泛参与,有助于加强和扩大美国和美国未来的 STEM 劳动力队伍和英国,并提高社会对最先进辐射检测技术发展的认识。最近,卤化铅钙钛矿单晶显着提高了辐射探测器的性能,但铅 (Pb) 含量较高。超过了许多司法管辖区(包括美国和英国)设定的最大限制,并且这些材料中容易的离子电导率限制了可以应用的电场范围,从而限制了它们的操作稳定性。该提案将解决当前的挑战。 X 射线探测器,包括有毒元素的使用、有限的性能、高制造成本和有限的载流子传输,我们的初步结果表明 BiOI 可以成为下一代铅基钙钛矿的理想无毒替代品。辐射探测器由于其重元素、大迁移率寿命积和高电阻率而具有超高探测率为了将该技术转移到工业并对医学成像和核安全产生影响,我们将进一步 1) 将迁移率寿命积提高到远高于此。 6±2 x 10-2 cm2 V-1 s-1 通过组合工程,2)在不影响性能的情况下将探测器的尺寸增加一个数量级(目前为 5 mm),以及 3)优化设备架构美国团队(布法罗大学)和英国团队(牛津大学和剑桥大学)联合研究的总体目标是开发新一代具有成本效益、稳定且规模化的铋-基于辐射探测器,能够检测到比当前商业标准低三个数量级的剂量率。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Quanxi Jia其他文献

Low field magnetotransport properties of (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 nanocomposite films
(La0.7Sr0.3MnO3)0.5:(ZnO)0.5纳米复合薄膜的低场磁输运性能
  • DOI:
    10.1063/1.2197317
  • 发表时间:
    2006-05-11
  • 期刊:
  • 影响因子:
    4
  • 作者:
    B. Kang;H. Wang;J. MacManus‐Driscoll;Y. Li;Quanxi Jia;I. Mihut;J. Betts
  • 通讯作者:
    J. Betts
Epitaxial growth of RuO2 thin films by metal-organic chemical vapor deposition
金属有机化学气相沉积法外延生长 RuO2 薄膜
  • DOI:
    10.1016/s0040-6090(98)01396-0
  • 发表时间:
    1999-02-26
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    P. Lu;S. He;F. X. Li;Quanxi Jia
  • 通讯作者:
    Quanxi Jia
Controlling Crystal Structure and Oxidation State in Molybdenum Nitrides through Epitaxial Stabilization
通过外延稳定控制氮化钼的晶体结构和氧化态
  • DOI:
    10.1021/jp2048376
  • 发表时间:
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Hongmei Luo;T. Mark McCleskey;Anthony K. Burrell;Quanxi Jia;Guifu Zou;Haiyan Wang;Joon Hwan Lee;Yuan Lin;Huisheng Peng;Qianglu Lin;Shuguang Deng;Eve Bauer
  • 通讯作者:
    Eve Bauer
Realization of BaZrS3 chalcogenide perovskite thin films for optoelectronics
用于光电子学的BaZrS3硫族化物钙钛矿薄膜的实现
  • DOI:
    10.1016/j.nanoen.2019.104317
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Xiucheng Wei;Haolei Hui;Chuan Zhao;Chenhua Deng;Mengjiao Han;Zhonghai Yu;Aaron Sheng;Pinku Roy;Aiping Chen;Junhao Lin;David F. Watson;Yi-Yang Sun;Tim Thomay;Sen Yang;Quanxi Jia;Shengbai Zhang;Hao Zeng
  • 通讯作者:
    Hao Zeng
High efficiency MIS/IL silicon solar cells with silicon oxynitride as ultra-thin tunneling films
以氮氧化硅为超薄隧道膜的高效MIS/IL硅太阳能电池
  • DOI:
    10.1016/0165-1633(88)90054-8
  • 发表时间:
    1988-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinming Liu;Quanxi Jia;L. Enke
  • 通讯作者:
    L. Enke

Quanxi Jia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Quanxi Jia', 18)}}的其他基金

Collaborative Research: ECCS-EPSRC: Development of uniform, low power, high density resistive memory by vertical interface and defect design
合作研究:ECCS-EPSRC:通过垂直接口和缺陷设计开发均匀、低功耗、高密度电阻式存储器
  • 批准号:
    1902623
  • 财政年份:
    2019
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Standard Grant

相似海外基金

ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
  • 批准号:
    EP/Y032942/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Research Grant
EPSRC New Horizons 2021: Engineering synthetic synapses between artificial and biological cells.
EPSRC New Horizo​​ns 2021:人工细胞和生物细胞之间的工程合成突触。
  • 批准号:
    EP/X018903/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Research Grant
EPSRC DTP Research Studentship: Developing a new electro-photosynthesis system for CO2 fixation
EPSRC DTP 研究奖学金:开发用于二氧化碳固定的新型电光合作用系统
  • 批准号:
    2886510
  • 财政年份:
    2023
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Studentship
EPSRC Centre for Doctoral Training in New and Sustainable PV
EPSRC新型和可持续光伏博士培训中心
  • 批准号:
    EP/L01551X/2
  • 财政年份:
    2021
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Training Grant
EPSRC Project Summary: New Methods for Network Time Series Analysis
EPSRC 项目摘要:网络时间序列分析的新方法
  • 批准号:
    2283002
  • 财政年份:
    2019
  • 资助金额:
    $ 39.9万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了