Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays

合作研究:FET:中:动态可重构原子阵列的高效编译

基本信息

  • 批准号:
    2313083
  • 负责人:
  • 金额:
    $ 63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Quantum computing is considered one of the most promising alternatives to go beyond the Moore’s Law scaling and provide drastic acceleration for selected applications and further the information technology revolution. The groundbreaking research carried out over the past four decades indicates that large-scale quantum systems may be used for far-reaching applications ranging from simulations of complex quantum matter to general purpose quantum information processing. Several quantum hardware platforms have made substantial advances in the past decade. Neutral atoms trapped in arrays of optical tweezers have recently emerged as an exceptionally promising experimental platform for programmable quantum simulations and quantum computation. These systems are readily scaled to large numbers and demonstrated experimentally that the qubit coupling for entanglement can be reconfigured dynamically during the quantum computation process, thus, are named dynamically reconfigurable atom arrays (DRAAs). DRAA introduces a number of unique opportunities. In particular, it supports a cache-compute computation model, where temporary data can be “cached” in a specific atom array for later computation, mimicking the architecture of modern CPUs. Moreover, algorithms involving error-corrected logical qubits can be implemented very efficiently, with a number of controls that scales with a number of logical (rather than physical) qubits. However, to take full advantage of this unique architecture, novel methods for compilation need to be developed, as programming a DRAA involves not only qubit placement and gate scheduling, but also atom movement. In addition, error correction needs to be considered and optimized under the constraint of available resources.This project aims at developing a novel DRAA compiler that simultaneously considers the problems of qubit placement, gate scheduling, atom movement, and selected error correction under a common compilation framework. In particular, it addresses four interrelated problems, including (i) Scalable compilation for DRAA that can efficiently support mapping, scheduling, and atom movement for DRAAs with hundreds to tens of thousands of atoms; (ii) Efficient support of the cache-based DRAA architecture, which has a memory zone, an entanglement zone, and a readout zone, with data reuse and data movement optimization; (iii) Customized support for hardware-efficient error correction on DRAAs that takes full advantage of atom movement capability, transversal property, and DRAA-specific error-biasing; and (iv) Selective error correction under resource constraints, where error criticality is analyzed and identified. The algorithms and compilation flow will be tested experimentally on the DRAA quantum computer developed at Harvard University. The project is an interdisciplinary collaboration effort by a team of researchers from the University of California Los Angeles (UCLA) Computer Science Department and the Harvard Physics Department. The investigators plan to integrate the research with education to expose students to the exciting opportunities of quantum computing and train a new generation of students so that they have deep knowledge in both quantum computing device technologies and large-scale design automation and optimization. The research results from this project will be disseminated widely via publications and tutorials at various conferences. The team will further facilitate the technology transfer and community-wide participation using open-source releases of both the compilation system and the DRAA experimental data developed under this project. Finally, the investigators plan to broaden the participation in computing via high-school summer programs and partnerships with various diversity and outreach programs, such as the Center for Excellence in Engineering and Diversity at UCLA and CUAEngage at Harvard.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子计算被认为是最有前途的替代方案之一,可以超越摩尔定律,为选定的应用提供大幅加速,并进一步推动信息技术革命。过去四十年进行的开创性研究表明,大规模量子系统可能会成为现实。用于从复杂量子物质的模拟到通用量子信息处理等深远的应用,在过去十年中,一些量子硬件平台取得了重大进展,光镊阵列中的中性原子最近已成为一种非常有前途的实验平台。为了这些系统很容易扩展到大量,并通过实验证明用于纠缠的量子位耦合可以在量子计算过程中动态重新配置,因此被称为动态可配置原子阵列(DRAA)。特别是,它支持缓存计算计算模型,其中临时数据可以“缓存”在特定的原子数组中以供以后计算,模仿了架构此外,纠错逻辑量子位的算法可以非常有效地实现,涉及许多可扩展的逻辑(而不是物理)量子位的控制,以充分利用这种独特的架构,新颖的方法需要开发编译,因为编程 DRAA 不仅涉及量子位放置和门调度,还涉及原子移动。此外,需要在可用资源的约束下考虑和优化纠错。该项目旨在开发一种新颖的方法。 DRAA 编译器在通用编译框架下同时考虑量子位放置、门调度、原子移动和选择性纠错问题,特别是它解决了四个相互关联的问题,包括 (i) 可有效支持映射的 DRAA 可扩展编译,具有数百到数万个原子的 DRAA 的调度和原子移动;(ii)对基于缓存的 DRAA 架构的有效支持,该架构具有存储区、纠缠区和读出区,并具有数据重用和数据移动优化;(iii)对 DRAA 的硬件高效纠错的定制支持,充分利用原子移动能力、横向属性和 DRAA 特定的错误偏差;以及(iv)资源限制下的选择性纠错;该项目是加州大学洛杉矶分校 (UCLA) 计算机研究团队的一项跨学科合作成果,将在哈佛大学开发的 DRAA 量子计算机上对算法和编译流程进行分析和识别。科学系和哈佛物理系的研究人员计划将研究与教育结合起来,让学生接触到量子计算的令人兴奋的机会,并培养新一代学生,使他们在量子计算设备技术和大规模量子计算方面拥有深入的知识。该项目的研究成果将通过各种会议的出版物和教程广泛传播,该团队将使用编译系统和 DRAA 实验的开源版本进一步促进技术转让和社区范围内的参与。最后,研究人员计划开发数据。通过高中暑期项目以及与各种多样性和外展项目的合作来扩大对计算的参与,例如加州大学洛杉矶分校的工程和多样性卓越中心和哈佛大学的 CUAEngage。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Cong其他文献

Compilation for Dynamically Field-Programmable Qubit Arrays with Efficient and Provably Near-Optimal Scheduling
具有高效且可证明接近最优调度的动态现场可编程量子位阵列的编译
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Bochen Tan;Wan;Jason Cong
  • 通讯作者:
    Jason Cong
Caffeine: Towards Uniformed Representation and Acceleration for Deep Convolutional Neural Networks
咖啡因:走向深度卷积神经网络的统一表示和加速
Automatic Hardware Pragma Insertion in High-Level Synthesis: A Non-Linear Programming Approach
高级综合中的自动硬件编译指示插入:一种非线性编程方法
  • DOI:
    10.1145/3626202.3637593
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Stéphane Pouget;L. Pouchet;Jason Cong
  • 通讯作者:
    Jason Cong
AutoDSE: Enabling Software Programmers Design Efficient FPGA Accelerators
AutoDSE:使软件程序员能够设计高效的 FPGA 加速器
FPQA-C: A Compilation Framework for Field Programmable Qubit Array
FPQA-C:现场可编程量子位阵列的编译框架
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanrui Wang;Pengyu Liu;Bochen Tan;Yilian Liu;Jiaqi Gu;David Z. Pan;Jason Cong;Umut A. Acar;Song Han
  • 通讯作者:
    Song Han

Jason Cong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Cong', 18)}}的其他基金

SHF: Medium: Automating High Level Synthesis via Graph-Centric Deep Learning
SHF:中:通过以图为中心的深度学习实现高级综合自动化
  • 批准号:
    2211557
  • 财政年份:
    2022
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
RTML: Large: Acceleration to Graph-Based Machine Learning
RTML:大型:加速基于图的机器学习
  • 批准号:
    1937599
  • 财政年份:
    2019
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
CAPA: Collaborative Research: A Multi-Paradigm Programming Infrastructure for Heterogeneous Architectures
CAPA:协作研究:异构架构的多范式编程基础设施
  • 批准号:
    1723773
  • 财政年份:
    2017
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
Accelerator-Rich Architectures with Applications to Healthcare
富含加速器的架构及其在医疗保健领域的应用
  • 批准号:
    1436827
  • 财政年份:
    2014
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
NSF Workshop; Electronic Design Automation -- Past, Present, and Future
美国国家科学基金会研讨会;
  • 批准号:
    0930477
  • 财政年份:
    2009
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Customizable Domain-Specific Computing
可定制的特定领域计算
  • 批准号:
    0926127
  • 财政年份:
    2009
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Synthesis and Mapping for Application-Specific Processor Networks
特定应用处理器网络的综合和映射
  • 批准号:
    0903541
  • 财政年份:
    2009
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
SGER: Platforms for Future Embedded Systems
SGER:未来嵌入式系统的平台
  • 批准号:
    0647442
  • 财政年份:
    2006
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
International Center on Design for Nanotechnologies
国际纳米技术设计中心
  • 批准号:
    0530261
  • 财政年份:
    2005
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant
MSPA-MCS: Scalable Optimization Algorithms for VLSI Circuit Physical Design
MSPA-MCS:VLSI 电路物理设计的可扩展优化算法
  • 批准号:
    0528583
  • 财政年份:
    2005
  • 资助金额:
    $ 63万
  • 项目类别:
    Continuing Grant

相似国自然基金

离子辐照精准调控SnS2栅极敏感材料缺陷密度增强碳基FET型气体传感器性能的研究
  • 批准号:
    12305330
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维铁电MOS场效应管的存算逻辑建模及其代数系统研究
  • 批准号:
    62304115
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于离子敏感场效应管和微纳孔道的三维电荷传感系统研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
半导体敏化栅极场效应管室温氢气传感器性能与机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
GaN基芯片场效应管异质结亚十纳米空间热输运机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403560
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329909
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403559
  • 财政年份:
    2024
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium: Design and Implementation of Quantum Databases
合作研究:FET:媒介:量子数据库的设计和实现
  • 批准号:
    2312754
  • 财政年份:
    2023
  • 资助金额:
    $ 63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了