Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse

合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理

基本信息

  • 批准号:
    2312842
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Deep learning has demonstrated unprecedented performance across various domains in engineering and science. However, the theoretical understanding of their success has remained elusive. Very recently, researchers discovered and characterized an elegant mathematical structure within the learned features and classifiers called Neural Collapse. This phenomenon persists across a variety of different network architectures, datasets, and data domains. This project will leverage the symmetry of Neural Collapse to develop a rigorous mathematical theory to explain when and why it happens and how it can be used to quantify generalization performance and provide guidelines to understand and improve transferability. By advancing the mathematical foundations of deep learning, this project is expected to influence not only the machine learning community, but also related areas such as optimization, signal and image processing, and natural language processing. The project also involves an integrated outreach and education plan, including promoting accessibility and awareness of computing and STEM concepts for K-12 students.This project will expand our understanding of the principles behind non-convex optimization of training deep learning models, and provide new mathematical insights on their generalization and transferability properties, leading to practical implications. In particular, the project is focused on the following three overarching research thrusts: (i) provide a unified framework to analyze convergence guarantees for training deep and overparametrized models through general loss functions to states of neural collapse, first for simplified cases and then for more general deep models that exhibit progressive neural collapse, with multi-labels and data imbalance; (ii) harness the structure of neural collapse to provide tighter generalization bounds for deep models, by characterizing the structure of the resulting classifiers and their mild dependence on the training data, as well as by making natural distributional assumptions; (iii) leverage the generalization of progressive neural collapse to new environments to understand transferability of deep models to new domains and tasks, and develop principled approaches for improving transferability and efficient fine-tuning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习在工程和科学的各个领域都表现出了前所未有的性能。然而,对其成功的理论理解仍然难以捉摸。最近,研究人员在学习的特征和分类器中发现并描述了一种优雅的数学结构,称为“神经崩溃”。这种现象在各种不同的网络架构、数据集和数据域中持续存在。该项目将利用神经崩溃的对称性来开发严格的数学理论,以解释其发生的时间和原因,以及如何使用它来量化泛化性能,并为理解和提高可迁移性提供指导。通过推进深度学习的数学基础,该项目预计不仅会影响机器学习社区,还会影响优化、信号和图像处理以及自然语言处理等相关领域。该项目还涉及综合外展和教育计划,包括促进 K-12 学生对计算和 STEM 概念的可及性和认识。该项目将扩大我们对训练深度学习模型的非凸优化背后原理的理解,并提供新的方法。对它们的泛化性和可转移性特性的数学见解,产生实际影响。特别是,该项目侧重于以下三个总体研究主旨:(i)提供一个统一的框架来分析通过神经崩溃状态的一般损失函数训练深度和过参数化模型的收敛保证,首先针对简化情况,然后针对更多情况表现出渐进性神经崩溃、多标签和数据不平衡的一般深度模型; (ii) 通过表征所得分类器的结构及其对训练数据的轻微依赖性以及做出自然分布假设,利用神经崩溃的结构为深度模型提供更严格的泛化界限; (iii) 利用渐进式神经崩溃对新环境的泛化,了解深度模型向新领域和任务的可迁移性,并开发提高可迁移性和高效微调的原则性方法。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qing Qu其他文献

The Emergence of Reproducibility and Generalizability in Diffusion Models
扩散模型中再现性和泛化性的出现
  • DOI:
  • 发表时间:
    2023-10-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huijie Zhang;Jinfan Zhou;Yifu Lu;Minzhe Guo;Peng Wang;Liyue Shen;Qing Qu
  • 通讯作者:
    Qing Qu
Responses of soil enzyme activity and soil organic carbon stability over time after cropland abandonment in different vegetation zones of the Loess Plateau of China
黄土高原不同植被区耕地撂荒后土壤酶活性和土壤有机碳稳定性随时间的响应
  • DOI:
    10.1016/j.catena.2020.104812
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Hongwei Xu;Qing Qu;Yanhua Chen;Guo;Sha Xue
  • 通讯作者:
    Sha Xue
Efficient Low-Dimensional Compression of Overparameterized Models
过度参数化模型的高效低维压缩
  • DOI:
    10.48550/arxiv.2311.01479
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Soo Min Kwon;Zekai Zhang;Dogyoon Song;Laura Balzano;Qing Qu
  • 通讯作者:
    Qing Qu
Wireless Human Motion Detection with a Highly Sensitive Wearable Pressure Sensing Technology
采用高灵敏度可穿戴压力传感技术的无线人体运动检测
  • DOI:
    10.1002/admt.202201936
  • 发表时间:
    2023-05-05
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Jinli Yan;Jie Liu;Qing Qu;Xinjian Chen;Jian Liu;Baoqing Nie
  • 通讯作者:
    Baoqing Nie
Hidden State Variability of Pretrained Language Models Can Guide Computation Reduction for Transfer Learning
预训练语言模型的隐藏状态变异性可以指导迁移学习的计算减少
  • DOI:
    10.48550/arxiv.2210.10041
  • 发表时间:
    2022-10-18
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuo Xie;Jiahao Qiu;Ankita Pasad;Li Du;Qing Qu;Hongyuan Mei
  • 通讯作者:
    Hongyuan Mei

Qing Qu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qing Qu', 18)}}的其他基金

Collaborative Research: CIF: Medium: Foundations of Robust Deep Learning via Data Geometry and Dyadic Structure
合作研究:CIF:媒介:通过数据几何和二元结构实现稳健深度学习的基础
  • 批准号:
    2212326
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Taming Deep Unsupervised Representation Learning in Imaging: Theory and Algorithms
合作研究:CIF:媒介:驯服成像中的深度无监督表示学习:理论和算法
  • 批准号:
    2212066
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: From Shallow to Deep Representation Learning: Global Nonconvex Optimization Theories and Efficient Algorithms
职业:从浅层到深层表示学习:全局非凸优化理论和高效算法
  • 批准号:
    2143904
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
  • 批准号:
    82301120
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
  • 批准号:
    82300022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
内核区对流活动与云微物理过程对登陆中国台风快速增强(RI)的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:

相似海外基金

Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: RUI: Automated Decision Making for Open Multiagent Systems
协作研究:RI:中:RUI:开放多智能体系统的自动决策
  • 批准号:
    2312657
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Multilingual Long-form QA with Retrieval-Augmented Language Models
合作研究:RI:Medium:采用检索增强语言模型的多语言长格式 QA
  • 批准号:
    2312948
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312956
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了