Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks

合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习

基本信息

  • 批准号:
    2312835
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Next-generation (NextG) wireless networks are anticipated to revolutionize various applications, such as interactive real-time applications like Augmented Reality (AR), while meeting the high Quality-of-Experience (QoE) requirements expected by users. To achieve these goals, NextG networks are undergoing a transformation toward a white-box architecture, characterized by openness, intelligence, and a focus on user needs. Therefore, it is both timely and important to address autonomous resource management within the NextG paradigm. This project aims to facilitate the transition from traditional black-box network designs to a white-box network architecture, which will significantly reduce costs and enhance QoE performance at its core. The findings of this project will be integrated into the curricula of all participating institutions. Furthermore, this project is committed to promoting the engagement of women and underrepresented minority (URM) students through research opportunities and outreach activities at their respective institutions. Mechanisms will be established to foster leadership and participation from URM groups in an annual high-profile research workshop held at OSU.O-RAN is an operator-driven alliance dedicated to the advancement of radio access networks (RAN) toward an open architecture. This research focuses on harnessing the advanced capabilities of O-RAN, with a specific emphasis on edge-assisted low-latency AR as a key use case, to address autonomous resource management in the NextG paradigm. The research employs a data-driven approach across multiple time scales, using Bayesian optimization (BO) as a sample-efficient online learning and black-box optimization tool. The research develops versatile techniques and building blocks to optimize the QoE performance, structured around three interconnected thrusts: (i) developing a provably efficient multi-time-scale data-driven BO framework integrated with O-RAN, (ii) achieving collaborative BO for multi-RAN learning and optimization, and (iii) applying the developed BO frameworks to edge-assisted low-latency AR applications. The research establishes the analytical foundations and algorithmic frameworks that will be integrated with open-source full-stack O-RAN implementations. The evaluation process involves simulations based on 3GPP standards in ns-3, as well as collaborations with industry partners including AT&T, Qualcomm, and Nokia Bell Labs. Real- world trace data and production-grade O-RAN platforms will be leveraged for evaluation purposes. The outcomes of this research not only contribute to advancing knowledge in machine-learning-enabled NextG systems design but also address critical needs within the broader machine learning and networking research communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代 (NextG) 无线网络预计将彻底改变各种应用,例如增强现实 (AR) 等交互式实时应用,同时满足用户期望的高体验质量 (QoE) 要求。为了实现这些目标,NextG网络正在向白盒架构转型,其特点是开放、智能、关注用户需求。因此,在 NextG 范式中解决自主资源管理问题既及时又重要。该项目旨在促进从传统黑盒网络设计向白盒网络架构的过渡,这将显着降低成本并增强其核心的QoE性能。该项目的研究结果将纳入所有参与机构的课程中。此外,该项目致力于通过各自机构的研究机会和外展活动,促进女性和代表性不足的少数族裔 (URM) 学生的参与。将建立机制,以促进 URM 团体在 OSU 举办的年度高调研究研讨会中的领导和参与。O-RAN 是一个运营商驱动的联盟,致力于推动无线接入网络 (RAN) 走向开放架构。这项研究的重点是利用 O-RAN 的先进功能,特别强调边缘辅助低延迟 AR 作为关键用例,以解决 NextG 范式中的自主资源管理问题。该研究采用跨多个时间尺度的数据驱动方法,使用贝叶斯优化(BO)作为样本高效的在线学习和黑盒优化工具。该研究开发了多种技术和构建模块来优化 QoE 性能,围绕三个相互关联的主旨构建:(i) 开发与 O-RAN 集成的可证明有效的多时间尺度数据驱动的 BO 框架,(ii) 实现协作 BO多 RAN 学习和优化,以及 (iii) 将开发的 BO 框架应用于边缘辅助的低延迟 AR 应用。该研究建立了分析基础和算法框架,将与开源全栈 O-RAN 实现相集成。评估过程涉及基于 ns-3 中 3GPP 标准的模拟,以及与 AT&T、高通和诺基亚贝尔实验室等行业合作伙伴的合作。真实世界的跟踪数据和生产级 O-RAN 平台将用于评估目的。这项研究的成果不仅有助于推进机器学习支持的 NextG 系统设计方面的知识,而且还满足了更广泛的机器学习和网络研究社区的关键需求。该奖项反映了 NSF 的法定使命,并被认为值得通过评估获得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xingyu Zhou其他文献

Stochastically predictive co-optimization of the speed planning and powertrain controls for electric vehicles driving in random traffic environment safely and efficiently
电动汽车在随机交通环境中安全高效行驶的速度规划和动力系统控制的随机预测协同优化
  • DOI:
    10.1016/j.jpowsour.2022.231200
  • 发表时间:
    2022-04-01
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Xingyu Zhou;Fengchun Sun;Chuntao Zhang;Chao Sun
  • 通讯作者:
    Chao Sun
Orbit Determination for Impulsively Maneuvering Spacecraft Using Modified State Transition Tensor
使用修正状态转移张量确定脉冲操纵航天器的轨道
Morphological Development of Sub-Grain Cellular/Bands Microstructures in Selective Laser Melting
选择性激光熔化中亚晶胞/带状微结构的形态发展
  • DOI:
    10.3390/ma12081204
  • 发表时间:
    2019-04-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Xihe Liu;Xingyu Zhou;Ben Xu;Jing Ma;Congcong Zhao;Zhijian Shen;Wei Liu
  • 通讯作者:
    Wei Liu
Multi-scale adaptive corner detection and feature matching algorithm for UUV task target image
UUV任务目标图像多尺度自适应角点检测与特征匹配算法
3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT
利用同步辐射微型 CT 对 Co-Cr-Mo 合金中选择性激光熔化缺陷进行 3D 成像
  • DOI:
    10.1016/j.actamat.2015.07.014
  • 发表时间:
    2015-10-01
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Xingyu Zhou;Dianzheng Wang;Xihe Liu;D;an Zhang;an;S. Qu;Jing Ma;Gary London;Zhijian Shen;Wei Liu
  • 通讯作者:
    Wei Liu

Xingyu Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xingyu Zhou', 18)}}的其他基金

CRII: CNS: Towards an Efficient Serverless Mobile Edge Computing Network
CRII:CNS:迈向高效的无服务器移动边缘计算网络
  • 批准号:
    2153220
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

基于PTBP3/CCDC25轴研究中性粒细胞胞外诱捕网(NETs)在胃癌腹膜转移中的作用及健脾散结法的治疗机制
  • 批准号:
    82305103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NETs通过m6A修饰lncRNA-H19调控内皮细胞铁死亡介导糖尿病足血管新生障碍的机制研究
  • 批准号:
    82370497
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
三叶青多糖调控补体-血小板-NETs稳态平衡干预免疫血栓过度形成防治重症肺炎的作用机制研究
  • 批准号:
    82374127
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
NETs及其介导的脂代谢重编程在肝细胞癌发生发展中的作用及机制研究
  • 批准号:
    82303259
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
  • 批准号:
    2343618
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
  • 批准号:
    2343619
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
  • 批准号:
    2312138
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312834
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: NSF NeTS PI Meeting - Spring 2023
协作研究:会议:NSF NeTS PI 会议 - 2023 年春季
  • 批准号:
    2309858
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了