Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
基本信息
- 批准号:2424305
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research connects two different fields, machine learning from data science and numerical partial differential equations from scientific and engineering computing, through the comparative study of the finite element method and finite neuron method. Finite element methods have undergone decades of study by mathematicians, scientists and engineers in many fields and there is a rich mathematical theory concerning them. They are widely used in scientific computing and modelling to generate accurate simulations of a wide variety of physical processes, most notably the deformation of materials and fluid mechanics. By contrast, deep neural networks are relatively new and have only been widely used in the last decade. In this short time, they have demonstrated remarkable empirical performance on a wide variety of machine learning tasks, most notably in computer vision and natural language processing. Despite this great empirical success, there is still a very limited mathematical understanding of why and how deep neural networks work so well. We hope to leverage the success of deep learning to improve numerical methods for partial differential equations and to leverage the theoretical understanding of the finite element method to better understand deep learning. The interdisciplinary nature of the research will also provide a good training experience for junior researchers. This project will support 1 graduate student each year of the three year project. Piecewise polynomials represent one of the most important functional classes in approximation theory. In classical approximation theory and numerical methods for partial differential equations, these functional classes are often represented by linear functional spaces associated with a priori given grids, for example, by splines and finite element spaces. In deep learning, function classes are typically represented by a composition of a sequence of linear functions and coordinate-wise non-linearities. One important non-linearity is the rectified linear unit (ReLU) function and its powers (ReLUk). The resulting functional class, ReLUk-DNN, does not form a linear vector space but is rather parameterized non-linearly by a high-dimensional set of parameters. This function class can be used to solve partial differential equations and we call the resulting numerical algorithms the finite neuron method (FNM). Proposed research topics include: error estimates for the finite neuron method, universal construction of conforming finite elements for arbitrarily high order partial differential equations, an investigation into how and why the finite neuron method gives a much better asymptotic error estimate than the corresponding finite element method, and the development and analysis of efficient algorithms for using the finite neuron method.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究通过对有限元方法和有限神经元方法的比较研究,将两个不同的领域从数据科学和数值偏微分方程中连接起来。有限元方法已经在许多领域的数学家,科学家和工程师进行了数十年的研究,并且有关于它们的丰富数学理论。它们被广泛用于科学计算和建模中,以生成各种物理过程的准确模拟,最著名的是材料和流体力学的变形。相比之下,深度神经网络相对较新,并且仅在过去十年中被广泛使用。在此短时间内,他们在各种机器学习任务上表现出了出色的经验表现,最著名的是在计算机视觉和自然语言处理中。尽管取得了巨大的经验成功,但仍然对为什么和深层神经网络的运作良好的数学了解仍然非常有限。我们希望利用深度学习的成功来改善部分微分方程的数值方法,并利用对有限元方法的理论理解来更好地了解深度学习。研究的跨学科性质还将为初级研究人员提供良好的培训经验。该项目将每年三年项目的每年支持1名研究生。分段多项式代表近似理论中最重要的功能类别之一。 在偏微分方程的经典近似理论和数值方法中,这些功能类通常由与先验给定的网格相关的线性功能空间表示,例如,花键和有限元空间。在深度学习中,功能类通常由线性函数序列和坐标的非线性组成表示。一个重要的非线性性是整流线性单元(RELU)函数及其功能(RELUK)。 由此产生的功能类Reluk-DNN不形成线性向量空间,而是通过一组高维参数的参数性来非线性化。 该功能类可用于求解部分微分方程,我们将所得的数值算法称为有限神经元方法(FNM)。拟议的研究主题包括:有限神经元方法的误差估计,对任意高阶部分偏微分方程的有限元素的普遍构建,对有限神经元方法的调查以及为什么对相应的有限元方法的渐近误差估计更好,以及对相应的有限元方法的更好估计,以及对使用有限的神经元的有效algority nears and decrient and necors necors nectors ne sef. thes thes.thes.the.值得通过基金会的智力优点和更广泛的影响审查标准来通过评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Siegel其他文献
Capital Gains Realizations of the Rich and Sophisticated
富人和成熟人士的资本收益变现
- DOI:
10.1257/aer.90.2.276 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
A. Auerbach;Jonathan Siegel - 通讯作者:
Jonathan Siegel
P2.06-027 Randomized Phase II Study of Anetumab Ravtansine or Vinorelbine in Patients with Metastatic Pleural Mesothelioma: Topic: Mesothelioma and SCLC
- DOI:
10.1016/j.jtho.2016.11.1520 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Raffit Hassan;Ross Jennens;Jan Van Meerbeeck;John Nemunaitis;George Blumenschein;Dean Fennell;Hedy Kindler;Silvia Novello;Annette Walter;Danila Serpico;Jonathan Siegel;Ariadna Holynskyj;Barrett Childs;Cem Elbi - 通讯作者:
Cem Elbi
Jonathan Siegel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Siegel', 18)}}的其他基金
US Participation at the Twenty-sixth International Domain Decomposition Conference
美国参加第二十六届国际域名分解会议
- 批准号:
2216799 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2111387 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Synaptic Physiology in the Isolated Mammalian Cochlea
离体哺乳动物耳蜗的突触生理学
- 批准号:
9114245 - 财政年份:1991
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Studies of Cochlear Hair Cell Synaptic Mechanisms
耳蜗毛细胞突触机制的研究
- 批准号:
8217273 - 财政年份:1983
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
基于深度学习和恰当正交分解的降阶时空有限元法研究
- 批准号:12301494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有限混合模型的分布式学习方法与理论性质
- 批准号:12301391
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习与双尺度有限元方法融合的泡沫铝结构冲击性能研究
- 批准号:52272364
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
有限样本下城轨列车轴箱轴承可持续学习剩余寿命预测方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习与双尺度有限元方法融合的泡沫铝结构冲击性能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2111387 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Lifestyle Intervention plus Metformin to Treat Frailty in Older Veterans with Obesity
生活方式干预加二甲双胍治疗老年肥胖退伍军人的虚弱
- 批准号:
10289701 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Lifestyle Intervention plus Metformin to Treat Frailty in Older Veterans with Obesity
生活方式干预加二甲双胍治疗老年肥胖退伍军人的虚弱
- 批准号:
10015506 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Lifestyle Intervention plus Metformin to Treat Frailty in Older Veterans with Obesity
生活方式干预加二甲双胍治疗老年肥胖退伍军人的虚弱
- 批准号:
10316270 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Comparative study of planning the civil protection: especially Japan, South Korea and U.K.
民事保护规划比较研究:特别是日本、韩国和英国
- 批准号:
15K03302 - 财政年份:2015
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)