U.S.-Ireland R&D Partnership - Visible Light-wave Generation and Manipulation through Non-Linear Waveguide Technology (VIBRANT)

美国-爱尔兰 R

基本信息

  • 批准号:
    2310869
  • 负责人:
  • 金额:
    $ 42.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Visible Light-wave, particularly green, generation and manipulation in a functional and miniaturized photonic integrated circuit is currently of significant interest for biophotonic applications as means to interrogate and characterize human tissue in order to rapidly diagnose or treat various illnesses with the promise of much improved healthcare. Current state-of-the-art optics for these applications are cumbersome, inflexible and costly. Leveraging the technological advancement made for implementing photonic integrated circuits in data- and telecommunication, this international collaborative research will provide a low-cost solution by realizing full optical systems on a centimeter-scale chip. The research project will be carried out between the US-The Ohio State University, and Ireland- Queens University Belfast, University College Cork and Munster Technological University. The success of this project will make significant advancements in a variety of photonic technologies, including robust, scalable, chemical and biological sensing via sensing systems on a chip that in turn, will have impact on the fields of sensing. The proposed integrated green photonic circuits involve a new architecture incorporating many integrated devices, leading to dense photonic integration on chip. This project will also place a strong emphasis on international collaboration, undergraduate research, and outreach to high school students who are interested in careers in science, technology, engineering, and mathematics. Graduate students and postdocs working on this project will perform joint experiments with visiting team members from these four institutions. The researchers also plan to include a short exchange visit for the students to facilitate the exchange of research experiences as well as the development of collaborations.The goal of this US-Ireland collaborative research project is to study visible light-wave generation and manipulation through non-linear waveguide technology to realize functional photonic integrated circuits (PICs). The primary research objective is to develop a PIC technology platform in the green spectral band. To enable this technological breakthrough, the project will co-integrate the materials for second harmonic generation with silicon nitride waveguides and infrared III-V pump lasers to allow the generation of green-light on-chip. The project will use an on-chip continuous-wave GaAs-laser emitting at 1062 nm to excite a high-Q lithium niobate (LN) ring resonator and subsequently generate the second harmonic (531 nm). Other new pulsed laser deposited- non-linear materials will be studied, developed, and characterized for efficient up-conversion. The integration technology will utilize transfer printing to evanescently and end-fire couple the non-linear materials and pump lasers with the low-loss waveguides. Novel LN PIC designs, fabrication and hybrid integration processes will be developed. We will explore modal phase matching and periodic poling-based quasi phase matching techniques on these non-linear materials to compare effectiveness of each of these methods. The limits of the poll-free modal phase matching technique in terms of achieving high second harmonic generation/visible conversion efficiency will be investigated. If successful, this PIC technology will offer compelling size, weight, power and cost reduction advantages and enable a wide range of emerging application in areas including sensing, security, medical, research and communication.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可见光波,特别是绿色光波,在功能性和小型化光子集成电路中的产生和操纵目前对生物光子应用具有重大意义,作为询问和表征人体组织的手段,以便快速诊断或治疗各种疾病,并有望大大改善卫生保健。目前用于这些应用的最先进的光学器件笨重、不灵活且成本高昂。利用在数据和电信领域实现光子集成电路的技术进步,这项国际合作研究将通过在厘米级芯片上实现完整的光学系统来提供低成本的解决方案。该研究项目将由美国俄亥俄州立大学和爱尔兰贝尔法斯特女王大学、科克大学和明斯特理工大学共同开展。该项目的成功将在各种光子技术方面取得重大进步,包括通过芯片上的传感系统实现稳健、可扩展的化学和生物传感,进而对传感领域产生影响。所提出的集成绿色光子电路涉及一种包含许多集成器件的新架构,从而实现芯片上的密集光子集成。该项目还将重点强调国际合作、本科生研究以及对科学、技术、工程和数学职业感兴趣的高中生的推广。从事该项目的研究生和博士后将与这四个机构的访问团队成员进行联合实验。研究人员还计划为学生进行一次短暂的交流访问,以促进研究经验的交流以及合作的发展。这个美国-爱尔兰合作研究项目的目标是研究通过非光波产生和操纵的可见光波。 -实现功能光子集成电路(PIC)的线性波导技术。主要研究目标是开发绿色光谱波段的 PIC 技术平台。为了实现这一技术突破,该项目将把二次谐波产生材料与氮化硅波导和红外 III-V 泵浦激光器共同集成,以在芯片上产生绿光。该项目将使用发射波长为 1062 nm 的片上连续波 GaAs 激光器来激发高 Q 值铌酸锂 (LN) 环形谐振器,并随后产生二次谐波 (531 nm)。其他新型脉冲激光沉积非线性材料将被研究、开发和表征,以实现高效的上转换。该集成技术将利用转移印刷将非线性材料和泵浦激光器与低损耗波导进行瞬息耦合和端射耦合。将开发新型 LN PIC 设计、制造和混合集成工艺。我们将探索这些非线性材料上的模态相位匹配和基于周期极化的准相位匹配技术,以比较每种方法的有效性。将研究无轮询模态相位匹配技术在实现高二次谐波生成/可见转换效率方面的局限性。如果成功,该 PIC 技术将提供引人注目的尺寸、重量、功耗和成本降低优势,并在传感、安全、医疗、研究和通信等领域实现广泛的新兴应用。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shamsul Arafin其他文献

Rh/InGaN1-xOx nanoarchitecture for light-driven methane reforming with carbon dioxide toward syngas.
  • DOI:
    10.1016/j.scib.2024.02.020
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Yixin Li;Jinglin Li;Tianqi Yu;Liang Qiu;S. M. N. Hasan;Lin Yao;Hu Pan;Shamsul Arafin
  • 通讯作者:
    Shamsul Arafin
An All-Optical Neuron for Scaling Integrated Photonic Neural Networks
用于扩展集成光子神经网络的全光神经元
  • DOI:
    10.1109/ipc57732.2023.10360538
  • 发表时间:
    2023-11-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Md. Saiful Islam Sumon;Mihai Crisan;Weicheng You;Shrivatch Sankar;Imad I. Faruque;Sarvagya Dwivedi;Shamsul Arafin
  • 通讯作者:
    Shamsul Arafin
Length dependence thermal conductivity of zinc selenide (ZnSe) and zinc telluride (ZnTe) – a combined first principles and frequency domain thermoreflectance (FDTR) study
  • DOI:
    10.1039/d2cp03612f
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Rajmohan Muthaiah;Roshan Sameer Annam;Fatema Tarannum;Ashish Kumar Gupta;Jivtesh Garg;Shamsul Arafin
  • 通讯作者:
    Shamsul Arafin

Shamsul Arafin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shamsul Arafin', 18)}}的其他基金

CAREER: GaSb-based Photonic Integrated Circuits for Short- and Mid-Wave Infrared Applications
职业:用于短波和中波红外应用的 GaSb 基光子集成电路
  • 批准号:
    2144375
  • 财政年份:
    2022
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
Tunnel Junction Based AlGaN Ultraviolet Lasers
基于隧道结的 AlGaN 紫外激光器
  • 批准号:
    2034140
  • 财政年份:
    2020
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
EAGER: Toward Monolithic Optically-Pumped Single-Photon Sources Based on Deterministic InGaN Quantum Dots in GaN Nanowires
EAGER:基于 GaN 纳米线中确定性 InGaN 量子点的单片光泵浦单光子源
  • 批准号:
    2020015
  • 财政年份:
    2020
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant

相似国自然基金

关于不对称去芳香化反应/Ireland-Claisen重排反应的研究:构筑手性吲哚啉衍生物
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:

相似海外基金

U.S.-Ireland R&D Partnership:CNS:Small:SWEET: Hardware and Software for Sustainable Wearable Edge Intelligence
美国-爱尔兰 R
  • 批准号:
    2315851
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S.-Ireland R&D Partnership: CIF: AF: Small: Enabling Beyond-5G Wireless Access Networks with Robust and Scalable Cell-Free Massive MIMO
合作研究:美国-爱尔兰 R
  • 批准号:
    2322191
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
U.S.-Ireland R&D Partnership: AQUASORB: Predictive Modeling of Atmospheric Water Sorption
美国-爱尔兰 R
  • 批准号:
    2154882
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S.-Ireland R&D Partnership: CIF: AF: Small: Enabling Beyond-5G Wireless Access Networks with Robust and Scalable Cell-Free Massive MIMO
合作研究:美国-爱尔兰 R
  • 批准号:
    2322190
  • 财政年份:
    2023
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Standard Grant
U.S.-Ireland R&D Partnership: Collaborative Research: CNS Core: Medium: A unified framework for the emulation of classical and quantum physical layer networks
美国-爱尔兰 R
  • 批准号:
    2247007
  • 财政年份:
    2022
  • 资助金额:
    $ 42.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了