CAREER: GaSb-based Photonic Integrated Circuits for Short- and Mid-Wave Infrared Applications
职业:用于短波和中波红外应用的 GaSb 基光子集成电路
基本信息
- 批准号:2144375
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Photonic integrated circuits (PICs) based on a semiconductor made of antimony and gallium (often referred to as “antimonide”) with monolithically-integrated active and passive components that operate in the extended short- and mid-wave infrared wavelength regime are currently of significant research interest due to a wide range of emerging applications, including chemical sensing, industrial process control, and non-invasive medical diagnostics. This wavelength regime of the electromagnetic spectrum is important because it contains a number of spectral features such as strong overtones and combination molecular absorption bands in gas- and liquid-phase molecules for sensing applications. This eye-safe spectral regime also has an atmospheric transmission window, which makes it suitable for LiDAR/remote sensing applications. This Faculty Early Career Development (CAREER) project will develop the first non-telecom photonic IC platform based on the antimonide material system. The scientific insights and technological advances stemming from the research will also broadly impact the field of photonics by enabling operation in this underdeveloped spectral region. Since the research topic will cross different disciplines of science and engineering, such as optics, materials science, electrical engineering, physics, and chemistry, it offers a range of potential, hands-on learning activities that will engage students of varying backgrounds. In addition to high impact research advancement, this project will support interdisciplinary education activities in nanoscience and nanotechnology. The educational and outreach components are aimed at promoting interests in science, technology, engineering, and mathematics (STEM) disciplines and propagating educational opportunities by exposing K-12, undergraduate and graduate students to advancements in optics and photonics.The overarching goals of this project are to advance intellectual understanding of the low-bandgap antimonide material system for the development and demonstration of a photonic integrated circuits (PICs) technology platform in the extended short- and mid-wave infrared (S-MWIR) spectral band and to expand educational opportunities related to infrared materials science and device technology. The primary research goals of the proposed project are to (1) develop the first non-telecom photonic integrated circuits platform, (2) realize novel single-chip–based widely tunable lasers and other PIC components with an emission wavelength range of 2.2-3.4 μm and finally (3) demonstrate highly-integrated widely tunable sensing PICs. This integrated photonic demonstration will prove feasibility for future, on-chip, low-cost, compact, robust, and energy-efficient photonic subsystems that will enable a wide range of practical applications. The work performed within this project will generate new fundamental knowledge related to the GaSb material system and build innovations at the photonic components- as well as -IC levels. To establish such a monolithic platform, widely-tunable semiconductor lasers, photodetectors, low-loss waveguides and 1 × 2 optical splitters in the wavelength range of 2.2-3.4 µm, will be designed, grown, fabricated and tested. Molecular beam epitaxy will be used for the growth of device structures. Multiple, individual SG-DBR (Sampled Grating-Distributed Bragg Reflector) lasers with tuning ranges of 150-250 nm (depending on the center emission wavelength) will be needed to cover the entire targeted range. As a result, the highly-integrated optical devices and subsystems will simultaneously improve performance and efficiency as well as help meet low size, weight, power and cost (SWaP-C) constraints for next-generation S-MWIR photonic technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于锑和镓(通常称为“锑化物”)制成的半导体的光子集成电路(PIC),具有单片集成的有源和无源元件,可在扩展的短波和中波红外波长范围内工作,目前具有重要意义。由于化学传感、工业过程控制和非侵入性医疗诊断等广泛的新兴应用,电磁频谱的这种波长范围很重要,因为它包含许多光谱特征,因此引起了人们的研究兴趣。作为用于传感应用的气相和液相分子中的强泛音和组合分子吸收带,这种对人眼安全的光谱范围还具有大气传输窗口,这使其适合激光雷达/遥感应用。 CAREER)项目将开发第一个基于锑化物材料系统的非电信光子IC平台,该研究产生的科学见解和技术进步也将通过在这个不发达的光谱中运行而广泛影响光子学领域。由于研究主题将跨越科学和工程的不同学科,例如光学、材料科学、电气工程、物理和化学,因此它提供了一系列潜在的实践学习活动,可以吸引不同背景的学生。除了具有高影响力的研究进展外,该项目还将支持纳米科学和纳米技术方面的跨学科教育活动,其教育和外展活动旨在促进人们对科学、技术、工程和数学 (STEM) 学科的兴趣,并通过暴露 K 来传播教育机会。 -12、本科生和研究生光学和光子学的进步。该项目的总体目标是增进对低带隙锑化物材料系统的理解,以开发和演示扩展的短波和中波光子集成电路(PIC)技术平台红外(S-MWIR)光谱带并扩大与红外材料科学和器件技术相关的教育机会 该项目的主要研究目标是(1)开发第一个非电信光子集成。电路平台,(2) 实现发射波长范围为 2.2-3.4 μm 的新型单芯片宽可调激光器和其他 PIC 组件,最后 (3) 演示高度集成的宽可调传感 PIC。该集成光子演示将证明这一点。未来片上、低成本、紧凑、稳健和节能的光子子系统的可行性,这些子系统将实现广泛的实际应用。该项目中进行的工作将产生与相关的新基础知识。 GaSb 材料系统,并在光子元件和 IC 层面进行创新,以建立这样一个单片平台、广泛可调的半导体激光器、光电探测器、低损耗波导和 2.2 波长范围内的 1 × 2 分光器。 -3.4 µm,将被设计、生长、制造和测试,用于多个单独的 SG-DBR 的生长。需要调谐范围为 150-250 nm(取决于中心发射波长)的光栅分布式布拉格反射器激光器来覆盖整个目标范围,因此,高度集成的光学器件和子系统将同时提高性能和性能。效率并有助于满足下一代 S-MWIR 光子技术的低尺寸、重量、功耗和成本 (SWaP-C) 限制。该奖项是 NSF 的法定使命,并被认为值得通过以下方式获得支持使用基金会的智力价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards GaSb-Based Monolithically Integrated Widely-Tunable Lasers for Extended Short- and Mid-Wave Infrared Wavelengths
面向 GaSb 基单片集成宽可调激光器,用于扩展短波和中波红外波长
- DOI:10.1109/jqe.2023.3236395
- 发表时间:2023-01
- 期刊:
- 影响因子:2.5
- 作者:You, Weicheng;Dwivedi, Sarvagya;Faruque, Imad I.;John, Demis D.;McFadden, Anthony P.;Palmstrom, Christopher J.;Coldren, Larry A.;Arafin, Shamsul
- 通讯作者:Arafin, Shamsul
Design of GaSb-based monolithic passive photonic devices at wavelengths above 2 µm
波长超过 2 µm 的 GaSb 基单片无源光子器件的设计
- DOI:10.1088/2515-7647/ace509
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Sumon, Md Saiful;Sankar, Shrivatch;You, Weicheng;Faruque, Imad I;Dwivedi, Sarvagya;Arafin, Shamsul
- 通讯作者:Arafin, Shamsul
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shamsul Arafin其他文献
Rh/InGaN1-xOx nanoarchitecture for light-driven methane reforming with carbon dioxide toward syngas.
- DOI:
10.1016/j.scib.2024.02.020 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:18.9
- 作者:
Yixin Li;Jinglin Li;Tianqi Yu;Liang Qiu;S. M. N. Hasan;Lin Yao;Hu Pan;Shamsul Arafin - 通讯作者:
Shamsul Arafin
An All-Optical Neuron for Scaling Integrated Photonic Neural Networks
用于扩展集成光子神经网络的全光神经元
- DOI:
10.1109/ipc57732.2023.10360538 - 发表时间:
2023-11-12 - 期刊:
- 影响因子:0
- 作者:
Md. Saiful Islam Sumon;Mihai Crisan;Weicheng You;Shrivatch Sankar;Imad I. Faruque;Sarvagya Dwivedi;Shamsul Arafin - 通讯作者:
Shamsul Arafin
Length dependence thermal conductivity of zinc selenide (ZnSe) and zinc telluride (ZnTe) – a combined first principles and frequency domain thermoreflectance (FDTR) study
- DOI:
10.1039/d2cp03612f - 发表时间:
2022-11 - 期刊:
- 影响因子:3.3
- 作者:
Rajmohan Muthaiah;Roshan Sameer Annam;Fatema Tarannum;Ashish Kumar Gupta;Jivtesh Garg;Shamsul Arafin - 通讯作者:
Shamsul Arafin
Shamsul Arafin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shamsul Arafin', 18)}}的其他基金
U.S.-Ireland R&D Partnership - Visible Light-wave Generation and Manipulation through Non-Linear Waveguide Technology (VIBRANT)
美国-爱尔兰 R
- 批准号:
2310869 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Tunnel Junction Based AlGaN Ultraviolet Lasers
基于隧道结的 AlGaN 紫外激光器
- 批准号:
2034140 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: Toward Monolithic Optically-Pumped Single-Photon Sources Based on Deterministic InGaN Quantum Dots in GaN Nanowires
EAGER:基于 GaN 纳米线中确定性 InGaN 量子点的单片光泵浦单光子源
- 批准号:
2020015 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于光电流分布光栅结构的GaSb基多段级联集成近中红外光梳研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于隧穿机制的GaSb基中波红外激光器设计及制备研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于铟镓砷/砷化镓量子阱纳米线阵列的光泵浦面发射激光器
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于高阶模耦合调控的毫米波砷化镓滤波芯片机理与应用研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于稀氮砷化镓(Dilute nitride GaNAs)的近红外自旋放大纳米线激光器的研究
- 批准号:61905071
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
GaAs-based vertical-cavity surface-emitting lasers with GaSb quantum rings (QRVCSELs)
具有 GaSb 量子环的 GaAs 垂直腔表面发射激光器 (QRVCSEL)
- 批准号:
103444 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
GOALI: Widely Tunable Gasb-Based Diode Lasers for Spectroscopy
GOALI:用于光谱学的宽范围可调谐 Gasb 二极管激光器
- 批准号:
1408126 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Investigation of vertical magneto-transport in infrared detector structures based on InAs/GaSb type-II superlattices
基于InAs/GaSb II型超晶格的红外探测器结构中垂直磁输运的研究
- 批准号:
DP1096846 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Fabrication of terahertz detectors based on InAs/AISb/AlGaSb/GaSb heterostructures
基于InAs/AISb/AlGaSb/GaSb异质结构的太赫兹探测器的制作
- 批准号:
18560421 - 财政年份:2006
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Far-infrared〜THz light emitter based on InAs/GaSb quantam cascade structures
基于InAs/GaSb量子级联结构的远红外〜太赫兹光发射器
- 批准号:
11355012 - 财政年份:1999
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (A).