NSF-ANR MCB/PHY: Elucidating Plant Vascular Function and Dynamics in Planta and on Chip

NSF-ANR MCB/PHY:阐明植物体内和芯片上的植物血管功能和动力学

基本信息

  • 批准号:
    2412533
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

The function of vascular plants relies both on active and passive transport phenomena driven through two coupled vascular systems: transpiration moves water from the roots to the leaves through the xylem to maintain hydration and transfer nutrients, and osmosis drives the flow through the phloem carrying photosynthesized sugars from the leaves throughout the plant for growth and storage. Both flows are also hypothesized to mediate long-distance biochemical signaling within the plant that coordinate whole-plant function and represent important targets for crop improvement for sustainable agriculture. This project unites expertise on physicochemistry, device engineering, and plant biology to develop new tools for interrogating these processes and new fundamental biophysical and biological understanding of them. Many fundamental questions remain on the physiological mechanisms of operation and functional roles of these transport processes, particularly relative to the phloem and its coupling to the xylem and other tissues: 1) the biophysics of the loading and unloading of sugars, water, and signaling molecules to and from the phloem; 2) the dynamics of phloem transport as a function of biotic (e.g., photosynthetic rate and localized tissue growth) and abiotic (e.g., diurnal variations in water status) processes; and 3) the coordination of these processes at the whole-organism scale. Progress on these topics has been hindered by the lack of experimental tools with which to investigate hypotheses across scales, from local membrane-mediated to system-scale processes, either in vitro or in planta. To address these questions, an international team of researchers in the USA and France will work together to develop the first synthetic system that allows for recapitulation of the full, coupled operation of the xylem and phloem systems to test a diversity of biophysical hypotheses on the mechanisms and function of plant vasculature. The team will also develop new sensors for sensing of vascular transport processes, in-plant; and inform and confront in vitro experiments with biophysical and biochemical experiments in vivo. This effort will provide new insights into the biology and biophysics of plant vascular function and create new tools for basic and applied research by others.The outcomes of this project will serve the broader community scientifically and technologically by creating new microfluidic devices and functionalities, new tools for in-plant measurement, and new understanding of the fundamentals of whole-plant integration of resources and signals. These tools and understanding could translate into strategies for crop improvement and management, as well as into other industries, including manufacturing. This international, cross-disciplinary project will provide rich training opportunities to graduate students and post-doctoral scholars at both institutions in the US and France. The Cornell-based team will create and deliver experiential curriculum related to this project for high school students from underserved communities and mentor undergraduate summer students through Research Experience for Undergraduates programs on these research themes. This collaborative US/France project is supported by the US National Science Foundation (NSF) and the French Agence Nationale de la Recherche (ANR), where NSF funds the US investigators and ANR funds the partners in France. The US investigators are jointly funded by the Physics of Living Systems program in the Directorate for Mathematical and Physical Sciences and the Molecular Biophysics program/Division of Molecular and Cellular Biosciences in the Directorate for Biological Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
血管植物的功能依赖于通过两个耦合的血管系统驱动的主动和被动转运现象:蒸腾作用将水从根部到叶子通过木质部移动以维持水合和传递养分,并使流经磷酸果液的流动使流通在植物中携带光合糖从叶片中流通,以供生长和储存。还假设这两种流都介导植物内的长距离生化信号传导,以协调全植物功能,并代表了可持续农业改善作物的重要目标。该项目将有关物理化学,设备工程和植物生物学的专业知识团结起来,以开发新的工具来询问这些过程以及对它们的新基本生物物理和生物学理解。许多基本问题仍然存在于这些运输过程的生理机制以及这些运输过程的功能作用上,尤其是相对于韧皮部及其与木质部和其他组织的耦合:1)糖,水和信号分子与石的载荷和卸载的生物物理学; 2)韧皮部传输的动力学与生物(例如,光合速率和局部组织生长)和非生物(例如,水状态的昼夜变化)过程的函数; 3)这些过程在整个生物量表上的协调。缺乏实验工具来妨碍这些主题的进展,这些工具缺乏在体外或植物学中研究范围的假设,从局部膜介导的局部膜介导的假设。为了解决这些问题,美国和法国的国际研究人员团队将共同开发第一个合成系统,该系统允许对木质部和韧皮部系统的完整,耦合操作概述,以测试有关植物脉管系统机制和功能的多样性生物物理假设的多样性。该团队还将开发新的传感器,以感知植入物的血管运输过程;并在体内进行生物物理和生化实验的体外实验和面对体外实验。这项工作将为植物血管功能的生物学和生物物理学提供新的见解,并为其他人创建新的工具,用于基本和应用研究。该项目的结果将通过创建新的微流体设备和功能,新的工具,用于整体资源的基本知识,并为整体资源的基本上建立新的理解,从而在科学和技术上为更广泛的社区提供服务。这些工具和理解可以转化为农作物改善和管理的策略,以及其他行业,包括制造业。这个国际,跨学科的项目将为美国和法国的各个机构提供丰富的培训机会,并为研究生和博士后学者提供丰富的培训机会。总部位于康奈尔大学的团队将通过为这些研究主题的本科课程的研究经验,为来自服务不足的社区的高中学生和导师本科生提供与该项目相关的体验课程。美国国家科学基金会(NSF)和法国Agence Nationale de la Recherche(ANR)的支持,NSF为美国调查人员和ANR提供了法国合作伙伴的资助。 The US investigators are jointly funded by the Physics of Living Systems program in the Directorate for Mathematical and Physical Sciences and the Molecular Biophysics program/Division of Molecular and Cellular Biosciences in the Directorate for Biological Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abraham Stroock其他文献

Abraham Stroock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abraham Stroock', 18)}}的其他基金

STC: Center for Research On Programmable Plant Systems
STC:可编程工厂系统研究中心
  • 批准号:
    2019674
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Cooperative Agreement
PFI:AIR - TT: Development of Tools and Methods for Extended Maturity Analysis of Concrete
PFI:AIR - TT:混凝土扩展成熟度分析工具和方法的开发
  • 批准号:
    1500261
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
International Collaboration in Chemistry: Origins of the anomalous thermodynamics and dynamics of metastable liquid water
国际化学合作:亚稳态液态水的反常热力学和动力学的起源
  • 批准号:
    0924463
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Fundamental Studies to Advance the Science and Engineering of Water at Negative Pressures
职业:推进负压水科学与工程的基础研究
  • 批准号:
    0747993
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
MRI: Development of a 4D micro/nano-scale defocused particle tracking (DPT) imaging technique and its applications in nanobiotechnology
MRI:4D微/纳米级散焦粒子追踪(DPT)成像技术的发展及其在纳米生物技术中的应用
  • 批准号:
    0619626
  • 财政年份:
    2006
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SST: Optimizing Microfluidic Transport and Magnetic Sensing for Detection of Detection of Pseudomonas Syringae
SST:优化微流体传输和磁传感以检测丁香假单胞菌
  • 批准号:
    0529042
  • 财政年份:
    2005
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

ANR与LAR在茶树表型儿茶素生物合成中的作用机制研究
  • 批准号:
    31902070
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
构成酿酒葡萄重要品质的原花色素的合成关键酶基因表达特性研究
  • 批准号:
    30871746
  • 批准年份:
    2008
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412550
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research:CISE-ANR:CIF:Small:Learning from Large Datasets - Application to Multi-Subject fMRI Analysis
合作研究:CISE-ANR:CIF:Small:从大数据集中学习 - 多对象 fMRI 分析的应用
  • 批准号:
    2316421
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CISE-ANR: Small: Evolutional deep neural network for resolution of high-dimensional partial differential equations
CISE-ANR:小型:用于求解高维偏微分方程的进化深度神经网络
  • 批准号:
    2214925
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research NSF-ANR: Mechanisms of Terminal Erythroid Enucleation
NSF-ANR 合作研究:终末红细胞剜除机制
  • 批准号:
    2210366
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了