CISE-ANR: Small: Evolutional deep neural network for resolution of high-dimensional partial differential equations

CISE-ANR:小型:用于求解高维偏微分方程的进化深度神经网络

基本信息

  • 批准号:
    2214925
  • 负责人:
  • 金额:
    $ 59.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

A vast number of phenomena across engineering, physics, economics and operational research are difficult to computationally predict because they depend on a large number of dimensions. A familiar example is the breakup of a liquid jet into a very large number of droplets, interacting with the background time-dependent and spatially varying field. A direct connection can be drawn between this example and the continuing pandemic where aerosol transmission of airborne pathogens is an important aspect of the contamination process. In such high-dimensional problems, the computational complexity increases with the number of particles. Therefore, developing an efficient and fast computational algorithms for solving the underlying equations will have a considerable impact on the engineering community, and will also come with significant ramifications across a wide range of disciplines including physics, medicine and public health. Machine-learning holds significant promise to revolutionize this vast range of applications by accelerating the solution of these high-dimensional, complex problems. Conventional machine-learning approaches rely on training data to approximate solutions of the governing equations, but such data are often either costly to generate or may not be available. One unique exception is the recently invented evolutional deep neural networks (EDNN) which do not rely on training. Instead, these networks forecast, or predict, the evolution of the pertinent physics by solving the governing equations. This unique feature is possible because the governing equations are recast in terms of the network parameters which can then evolve according to the physical laws to accurately predict the evolution of the system. In this effort—a collaboration between the United States and France—EDNN algorithms are developed for accurate and efficient solution of high-dimensional partial differential equations. Fundamental challenges related to the design of the optimal network architecture, dynamic adaptivity of the solution and scalability for massive parallelism are addressed, and evaluated against benchmark high-fidelity data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
工程、物理学、经济学和运筹学领域的大量现象很难通过计算来预测,因为它们依赖于大量的维度。一个常见的例子是液体射流破碎成大量液滴,并与液滴相互作用。背景时间依赖和空间变化的领域可以在这个例子和持续的流行病之间建立直接联系,其中空气传播的病原体的气溶胶传播是污染过程的一个重要方面,在这种高维问题中,计算复杂性随着时间的推移而增加。因此,开发一种高效、快速的计算算法来求解基本方程将对工程界产生相当大的影响,并且还将对包括物理、医学和公共卫生在内的广泛学科产生重大影响。通过加速这些高维复杂问题的解决,传统的机器学习方法依赖于训练数据来近似求解控制方程,从而彻底改变了广泛的应用,但此类数据通常要么生成成本高昂,要么可能无法获得。一个独特的例外是最近发明的。进化深度神经网络(EDNN)不依赖于训练,而是通过求解控制方程来预测相关物理的演化,因为控制方程是根据网络参数可以根据物理定律演化,从而准确预测系统的演化。在这项由美国和法国合作的项目中,我们开发了 EDNN 算法,用于准确、高效地求解高维偏高效微分方程。与设计有关的基本挑战。解决方案的最佳网络架构、解决方案的动态适应性和大规模并行的可扩展性,并根据基准高保真数据进行评估。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tamer Zaki其他文献

Low-frequency selectivity in flat-plate boundary layer with elliptic leading edge
椭圆前缘平板边界层的低频选择性
  • DOI:
    10.1017/jfm.2019.91
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Bofu Wang;Xuerui Mao;Tamer Zaki
  • 通讯作者:
    Tamer Zaki
Application of Metal Organic Frameworks in Carbon Dioxide Conversion to Methanol

Tamer Zaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tamer Zaki', 18)}}的其他基金

Collaborative Research: Unraveling the Spatiotemporal Dynamics of Inertio-Elastic Turbulence using Measurements and Data-Infused Simulations
合作研究:利用测量和数据注入模拟揭示惯性弹性湍流的时空动力学
  • 批准号:
    2027875
  • 财政年份:
    2020
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
GOALI: Effect of free-stream disturbances on turbulent boundary layers
目标:自由流扰动对湍流边界层的影响
  • 批准号:
    1605404
  • 财政年份:
    2016
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
BDD: A Big-Data Computational Laboratory for the Optimization of Olfactory Search Algorithms in Turbulent Environments
BDD:用于优化湍流环境中嗅觉搜索算法的大数据计算实验室
  • 批准号:
    1461870
  • 财政年份:
    2015
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
UNS: Collaborative research: the onset of turbulence in viscoelastic wall-bounded shear flows
UNS:合作研究:粘弹性壁界剪切流中湍流的开始
  • 批准号:
    1511937
  • 财政年份:
    2015
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
Vortical Mode Interactions and Bypass Transition Delay in Two-Fluid Boundary Layers
二流体边界层中的涡旋模式相互作用和旁路跃迁延迟
  • 批准号:
    EP/F034997/1
  • 财政年份:
    2008
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Research Grant

相似国自然基金

ANR与LAR在茶树表型儿茶素生物合成中的作用机制研究
  • 批准号:
    31902070
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
构成酿酒葡萄重要品质的原花色素的合成关键酶基因表达特性研究
  • 批准号:
    30871746
  • 批准年份:
    2008
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目

相似海外基金

CISE-ANR: RI: Small: Numerically efficient reinforcement learning for constrained systems with super-linear convergence (NERL)
CISE-ANR:RI:小:具有超线性收敛 (NERL) 的约束系统的数值高效强化学习
  • 批准号:
    2315396
  • 财政年份:
    2023
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
CISE-ANR: SHF: Small: Scenario-based Formal Proofs for Concurrent Software
CISE-ANR:SHF:小型:并发软件的基于场景的形式化证明
  • 批准号:
    2315363
  • 财政年份:
    2023
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
CISE-ANR: HCC: Small: Omnidirectional BatVision: Learning How to Navigate from Cell Phone Audios
CISE-ANR:HCC:小型:全向 BatVision:学习如何通过手机音频进行导航
  • 批准号:
    2215542
  • 财政年份:
    2023
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
CISE-ANR: HCC: Small: Learning to Translate Freehand Design Drawings into Parametric CAD Programs
CISE-ANR:HCC:小型:学习将手绘设计图转换为参数化 CAD 程序
  • 批准号:
    2315354
  • 财政年份:
    2023
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
CISE-ANR: SHF: Small: CHAMELEON: CompreHending And Mitigating Error in AnaLog ImplEmentations of On-Die Neural Networks
CISE-ANR:SHF:小:CHAMELEON:理解并减轻片上神经网络模拟实现中的错误
  • 批准号:
    2214934
  • 财政年份:
    2022
  • 资助金额:
    $ 59.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了