Decision-Embedded Deep Learning for Transit Systems
交通系统决策嵌入式深度学习
基本信息
- 批准号:2409847
- 负责人:
- 金额:$ 43.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award support research that investigates the impacts of deep learning on decision-making and the development of a new type of learning paradigm where decision models are directly integrated into deep learning model design, with an explicit focus on transit system applications. It aims to help transit decision-makers understand the impacts of deep learning models on their decision-making outcomes such as transit timetable design and bus motion control. It also aims to offer transit researchers and practitioners a novel framework for developing deep learning models with verifiable decision quality in both normal and adversarial (e.g., malicious cyberattacks, sensor malfunctions, and extreme weather conditions) scenarios. The outcomes of this project will open new research areas in both fundamental methodologies and civil infrastructure applications. The project will offer interdisciplinary education and research training opportunities and new deep-learning-related courses to undergraduate and graduate students. It will also involve under-represented minority students at the secondary, undergraduate, and graduate levels through course projects, research assistantships and internship opportunities.This research project integrates deep learning theories with knowledge and methods from transportation engineering to generate new knowledge on the interplay between learning-based prediction and transit decision-making. Theoretical bounds identified through this research projct will assist transit agencies in designing deep learning models, such as choosing the right sample size and identifying the appropriate model architecture, to optimize transit decision-making quality. A new deep learning paradigm will be created to overcome the limitations of existing works, thereby assuring optimal decision-making outcomes in transit systems. This researched paradigm intends to leverage decision errors to update parameters in deep learning models so that they move toward optimal and reliable decisions directly. This paradigm could not only benefit transportation systems but also transform many other infrastructure systems such as power distribution and communications where parameter prediction and decision-making are currently largely siloed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项奖励研究研究研究了深度学习对决策的影响以及新型学习范式的开发,其中决策模型直接集成到深度学习模型设计中,并明确关注过境系统应用程序。它旨在帮助公交决策者了解深度学习模型对他们的决策结果的影响,例如公交时间表设计和公交车运动。它还旨在为运输研究人员和从业人员提供一个新颖的框架,用于开发具有正常和对抗性(例如恶意网络攻击,传感器故障和极端天气状况)的深度学习质量的深度学习模型。该项目的结果将在基本方法和民用基础设施应用中开放新的研究领域。该项目将为本科生和研究生提供跨学科的教育和研究培训机会以及与深度学习有关的新课程。它还将通过课程项目,研究助理职位和实习机会涉及二级,本科和研究生级别的代表性不足的少数族裔学生。该研究项目将深度学习理论与交通工程的知识和方法相结合,从运输工程中,以在学习基于学习的预测和交通决策之间建立有关相互作用的新知识。通过这项研究确定的理论界限将有助于运输机构设计深度学习模型,例如选择正确的样本量并确定适当的模型体系结构,以优化运输决策质量。将创建一个新的深度学习范式来克服现有作品的局限性,从而确保运输系统中的最佳决策结果。该研究的范式打算利用决策错误来更新深度学习模型中的参数,以便它们直接朝着最佳和可靠的决策迈进。该范式不仅可以使运输系统受益,而且可以改变许多其他基础设施系统,例如电源分配和参数预测和决策制定,目前在很大程度上被索洛。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查审查标准来通过评估来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiwei Chen其他文献
AAV-Vectored Fms-Related Tyrosine Kinase 3 Ligand Inhibits CD34+ Progenitor Cell Engraftment in Humanized Mice
AAV 载体 Fms 相关酪氨酸激酶 3 配体抑制人源化小鼠中 CD34 祖细胞植入
- DOI:
10.1007/s11481-018-9819-0 - 发表时间:
2018 - 期刊:
- 影响因子:6.2
- 作者:
L. Ling;X. Tang;Xiuyan Huang;Jingjing Li;Hui Wang;Zhiwei Chen - 通讯作者:
Zhiwei Chen
Photoelectrocatalytic Reforming of Polyol‐based Biomass into CO and H2 over Nitrogen‐doped WO3 with Built‐in Electric Fields
在内置电场的氮掺杂 WO3 上将多元醇基生物质光电催化重整为 CO 和 H2
- DOI:
10.1002/ange.202210745 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Fanhao Kong;Hongru Zhou;Zhiwei Chen;Zhaolin Dou;Min Wang - 通讯作者:
Min Wang
Numerical Scheme for Predicting Chloride Diffusivity of Concrete
预测混凝土氯离子扩散率的数值方案
- DOI:
10.1061/(asce)mt.1943-5533.0003883 - 发表时间:
2021-09 - 期刊:
- 影响因子:3.2
- 作者:
Hailong Wang;Zhiwei Chen;Jian Zhang;Jianjun Zheng;Xiaoyan Sun;Jianhua Li - 通讯作者:
Jianhua Li
A numerical investigation on the hydrogen reduction of wüstite using a 2D mesoscale method
使用二维介观方法对方铁矿氢还原进行数值研究
- DOI:
10.1016/j.ijhydene.2021.12.154 - 发表时间:
2022-01 - 期刊:
- 影响因子:7.2
- 作者:
Kun He;Zhong Zheng;Zhiwei Chen - 通讯作者:
Zhiwei Chen
Tea Bud Detection and 3D Pose Estimation in the Field with a Depth Camera Based on Improved YOLOv5 and the Optimal Pose-Vertices Search Method
基于改进的 YOLOv5 和最优姿态顶点搜索方法的深度相机现场茶芽检测和 3D 位姿估计
- DOI:
10.3390/agriculture13071405 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhiwei Chen;Jianneng Chen;Yang Li;Zhiyong Gui;Taojie Yu - 通讯作者:
Taojie Yu
Zhiwei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhiwei Chen', 18)}}的其他基金
RAPID: Developing an Interactive Dashboard for Collecting and Curating Traffic Data after the March 26, 2024 Francis Scott Key Bridge Collapse
RAPID:开发交互式仪表板,用于收集和管理 2024 年 3 月 26 日 Francis Scott Key 大桥倒塌后的交通数据
- 批准号:
2426947 - 财政年份:2024
- 资助金额:
$ 43.26万 - 项目类别:
Standard Grant
RAPID: Impact of Highway Infrastructure Failures on Transit Usage: The Case of the 11 June 2023 I-95 Bridge Collapse in Philadelphia, Pennsylvania
RAPID:高速公路基础设施故障对交通使用的影响:以 2023 年 6 月 11 日宾夕法尼亚州费城 I-95 大桥倒塌事件为例
- 批准号:
2333548 - 财政年份:2023
- 资助金额:
$ 43.26万 - 项目类别:
Standard Grant
相似国自然基金
热力学表述的二维异质界面分子插层嵌入和微结构演化的分子模拟研究
- 批准号:22378185
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向资源受限嵌入式系统的深度神经网络优化和软硬件架构协同探索
- 批准号:62372183
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于expander方法的三类图结构(拓扑子式、浸入、图子式)嵌入问题研究
- 批准号:12301447
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数字生态下隐形冠军企业跨越数字鸿沟的嵌入模式研究
- 批准号:72302071
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于粒子散射层析重构与嵌入物理约束神经网络的三维湍流场即时重建方法研究
- 批准号:52376160
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAREER: DeepMatter: A Scalable and Programmable Embedded Deep Neural Network
职业:DeepMatter:可扩展且可编程的嵌入式深度神经网络
- 批准号:
2348983 - 财政年份:2023
- 资助金额:
$ 43.26万 - 项目类别:
Continuing Grant
Integrated Ensemble Learning with Embedded Vectors in Authorship Attribution
作者归属中使用嵌入式向量的集成集成学习
- 批准号:
22K12726 - 财政年份:2022
- 资助金额:
$ 43.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine-learning assisted detection for neck lymph node metastasis in early-stage oral cancer
机器学习辅助检测早期口腔癌颈部淋巴结转移
- 批准号:
473571 - 财政年份:2022
- 资助金额:
$ 43.26万 - 项目类别:
Fellowship Programs
Embedded sensor fusion deep network for road user detection
用于道路用户检测的嵌入式传感器融合深度网络
- 批准号:
570655-2021 - 财政年份:2022
- 资助金额:
$ 43.26万 - 项目类别:
Alliance Grants
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Develop Scalable and Reliable Deep Learning-driven Embedded Control Applied in Renewable Energy Integration
合作研究:CISE-MSI:RCBP-RF:CPS:开发可扩展且可靠的深度学习驱动的嵌入式控制应用于可再生能源集成
- 批准号:
2131175 - 财政年份:2021
- 资助金额:
$ 43.26万 - 项目类别:
Standard Grant