Single-particle electrochemistry to identify fundamental barriers to magnesium ion intercalation in transition metal oxides

单粒子电化学确定过渡金属氧化物中镁离子嵌入的基本障碍

基本信息

  • 批准号:
    2312359
  • 负责人:
  • 金额:
    $ 69.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Li-ion batteries have seen a steady growth in achievable energy storage capacity and durability over the last several years, rendering them the dominant market player. However, accelerating the transition to a society based on renewable energy still requires new alternative battery chemistries. One possible solution is to replace lithium ions as the primary carriers of electronic charges by multivalent carriers like magnesium. The theoretical gains with the use of magnesium are hampered by the inefficient transport of magnesium within the battery at relevant temperatures of operation, especially in the solid oxide cathodes needed for transformational gains in energy density. In this project, novel approaches of electron microscopy are combined to examine the intrinsic reactivity of model transition metal oxides as cathodes in Mg-ion batteries. These approaches will isolate the behavior of individual electrode particles from the effect of the complex architectures used in conventional electrodes and reveal the balance between productive and competing processes at the atomic scale. This project will quantify critical bottlenecks in the development of high-energy batteries based on magnesium to unlock the next generation of rechargeable devices. The project’s activities center around education and training providing the diverse student body at University of Illinois - Chicago (UIC), a Research-1 Hispanic-serving institution with opportunities for hands-on research and learning experiences in cutting-edge electrochemistry, materials science, and characterization research. The integration of research and education through the training of undergraduate and graduate students in state-of-the-art in-situ scanning transmission electron microscopy and electrochemistry is an integral feature of this project.This research project seeks to identify and overcome the fundamental barriers of efficient Mg-ion intercalation in transition metal oxide cathodes using a combination of cathode synthesis, electrochemistry, and state-of-the-art electron microscopy. Several oxides have now been shown to be active toward Mg intercalation, yet the process demands high temperature and is accompanied by an unacceptably high hysteresis, a fatal flaw for practical application. This project focuses on MgV2O4 as a model system to unravel the fundamental barriers to efficient Mg2+ intercalation by conducting measurements on single particle cathodes, revealing the intrinsic behavior of the material, rather than the convolution of cell design and transport across a complex electrode architecture. Novel in-situ holders, thin-film model system cathodes and scanning transmission electron microscopy provide an atomic-scale description of bulk and interfacial transformations of single particles during electrochemical cycling, separating changes due to reversible intercalation from irreversible competing reactions. The evaluation of reactivity at multiple temperatures will provide unique insight into the kinetic limitations of the structural transitions, charting a path for Mg-based cathodes towards a battery at, or near, room temperature.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
过去几年,锂离子电池在可实现的储能容量和耐用性方面取得了稳步增长,使其成为市场的主导者。然而,加速向基于可再生能源的社会过渡仍然需要新的替代电池化学物质。解决方案是用镁等多价载体取代锂离子作为电子电荷的主要载体。在相关工作温度下,镁在电池内的低效传输(尤其是在固体氧化物中)阻碍了使用镁的理论增益。在该项目中,结合电子显微镜的新方法来检查模型过渡金属氧化物作为镁离子电池中的阴极的固有反应性。该项目将量化传统电极中使用的复杂结构的影响,并揭示原子尺度的生产过程和竞争过程之间的平衡,以解锁下一代可充电设备。该项目的活动以教育和培训为中心,为伊利诺伊大学芝加哥分校 (UIC) 的多元化学生群体提供机会,该大学是一所研究 1 西班牙裔服务机构,提供在尖端电化学、材料科学和化学等领域的实践研究和学习经验。通过对本科生和研究生进行最先进的原位扫描透射电子显微镜和电化学培训,将研究和教育结合起来,是该项目的一个组成部分。该研究项目旨在识别和克服这些问题。的根本障碍结合阴极合成、电化学和最先进的电子显微镜,在过渡金属氧化物阴极中进行有效的镁离子嵌入,现已证明几种氧化物对镁嵌入具有活性,但该过程需要高温和高温。伴随着令人无法接受的高滞后现象,这是实际应用的致命缺陷。该项目重点关注 MgV2O4 作为模型系统,以解决高效 Mg2+ 的基本障碍。通过在单粒子阴极上进行测量,揭示材料的内在行为,而不是通过复杂的电极结构进行电池设计和传输的卷积,新颖的原位支架、薄膜模型系统阴极和扫描透射电子显微镜提供了插层。对电化学循环过程中单个颗粒的体相和界面转变的原子尺度描述,将可逆插层引起的变化与不可逆竞争反应分开,对多个温度下的反应性进行评估将提供对电化学循环过程的独特见解。结构转变的动力学限制,为镁基阴极在室温或接近室温的情况下走向电池指明了道路。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Klie其他文献

Performance assessment of a slat gamma camera collimator for 511 keV imaging
用于 511 keV 成像的板条伽马相机准直器的性能评估
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alan J Britten;Robert Klie
  • 通讯作者:
    Robert Klie

Robert Klie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Klie', 18)}}的其他基金

Discovering Novel Properties in Few-Layer MXenes Using Analytical, In-Situ Scanning Transmission Electron Microscopy
使用分析原位扫描透射电子显微镜发现少层 MXene 的新特性
  • 批准号:
    2309396
  • 财政年份:
    2023
  • 资助金额:
    $ 69.91万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Monochromated, Magnetic-Field-Free, Atomic-Resolution Scanning Transmission Electron Microscope Enabling Multidisciplinary Research and Education
MRI:获取单色、无磁场、原子分辨率扫描透射电子显微镜,实现多学科研究和教育
  • 批准号:
    2215976
  • 财政年份:
    2022
  • 资助金额:
    $ 69.91万
  • 项目类别:
    Standard Grant
A combined theory-experiment study of electronic, magnetic and thermal properties of complex oxide nano-structures
复合氧化物纳米结构电、磁、热性能的理论与实验相结合研究
  • 批准号:
    1831406
  • 财政年份:
    2018
  • 资助金额:
    $ 69.91万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Dual-EELS Gatan Quantum Imaging Spectrometer to Upgrade the JEOL ARM200CF at UIC.
MRI:购买双 EELS Gatan 量子成像光谱仪以升级 UIC 的 JEOL ARM200CF。
  • 批准号:
    1626065
  • 财政年份:
    2016
  • 资助金额:
    $ 69.91万
  • 项目类别:
    Standard Grant
Controlling Defects in Transition Metal Oxide Thin Films
控制过渡金属氧化物薄膜中的缺陷
  • 批准号:
    1408427
  • 财政年份:
    2014
  • 资助金额:
    $ 69.91万
  • 项目类别:
    Continuing Grant
Understanding the Active Sites in Selective Alcohol Synthesis with Promoted Rh Catalysts
了解促进 Rh 催化剂选择性醇合成中的活性位点
  • 批准号:
    1067020
  • 财政年份:
    2011
  • 资助金额:
    $ 69.91万
  • 项目类别:
    Standard Grant
MRI-R2: Acquisition of an Aberration-Corrected Scanning Transmission Electron Microscope for Multidisciplinary Research and Education at UIC
MRI-R2:为 UIC 的多学科研究和教育购买像差校正扫描透射电子显微镜
  • 批准号:
    0959470
  • 财政年份:
    2010
  • 资助金额:
    $ 69.91万
  • 项目类别:
    Standard Grant
CAREER: Atomic-Resolution Study of Electron-Spin Interaction in Strongly-Correlated Mixed-Valence Cobalt Oxide Nano-Structures
职业:强相关混合价氧化钴纳米结构中电子自旋相互作用的原子分辨率研究
  • 批准号:
    0846784
  • 财政年份:
    2009
  • 资助金额:
    $ 69.91万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于中空金属有机骨架负载超细金属纳米粒子的电化学生物传感研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
新型粒子电极电化学体系去除饮用水高致毒性N-DBPs的机制与调控
  • 批准号:
    52070043
  • 批准年份:
    2020
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
碳空心球封装硫化物纳米粒子的可控制备与电化学储能机理研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    64 万元
  • 项目类别:
    面上项目
基于钢渣的三维电化学净水体系中自由基形成机理及其调控
  • 批准号:
    21906011
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
富勒烯和金属纳米粒子的有机/无机杂化薄膜的电化学制备及光限幅研究
  • 批准号:
    21805271
  • 批准年份:
    2018
  • 资助金额:
    26.2 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Bipolar Electrochemical Single Entity Bioanalyzer
双极电化学单一实体生物分析仪
  • 批准号:
    10644615
  • 财政年份:
    2023
  • 资助金额:
    $ 69.91万
  • 项目类别:
Development and Deployment of an Electrochemical Antigen Testing System for SARS-CoV-2
SARS-CoV-2 电化学抗原检测系统的开发和部署
  • 批准号:
    10195248
  • 财政年份:
    2021
  • 资助金额:
    $ 69.91万
  • 项目类别:
Modular, in-situ probes of brain chemistry
大脑化学的模块化原位探针
  • 批准号:
    10612396
  • 财政年份:
    2020
  • 资助金额:
    $ 69.91万
  • 项目类别:
Modular, in-situ probes of brain chemistry
大脑化学的模块化原位探针
  • 批准号:
    10398217
  • 财政年份:
    2020
  • 资助金额:
    $ 69.91万
  • 项目类别:
Modular, in-situ probes of brain chemistry
大脑化学的模块化原位探针
  • 批准号:
    10227222
  • 财政年份:
    2020
  • 资助金额:
    $ 69.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了