Electronic, transport and topological properties of frustrated magnets

受挫磁体的电子、输运和拓扑特性

基本信息

  • 批准号:
    2403804
  • 负责人:
  • 金额:
    $ 25.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-05-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical research on understanding quantum materials and phenomena related to frustrated magnetism, which refers to magnetic materials that have competing tendencies to assume different and mutually exclusive magnetic orders that lead to different macroscopic magnetic behavior. Additional complexity due to magnetic frustration makes theoretical and computational study of such materials rather challenging, and many interesting questions remain unanswered. Yet, for the same reason magnetically frustrated materials feature novel physical properties, which are of both fundamental and potential technological interest. This project is aimed at achieving new advances in conceptual understanding of the microscopic physics of such materials through a combined effort of theoretical physics and computational materials science approaches. The theoretical and computational research will proceed in close collaboration with experimental groups studying the same materials.This award also supports the PI's educational activities aimed at training undergraduate and graduate students, and a postdoctoral research associate in computational materials science. This training is expected to offer the students and postdoc an excellent opportunity to acquire knowledge in advanced electronic structure methods, state-of-the-art materials modeling techniques, and high-performance computing, which are essential for their future employment in academia or industry. TECHNICAL SUMMARYThis award supports theoretical research on understanding quantum materials and phenomena related to frustrated magnetism. Magnetic frustration lies at the core of the notion of skyrmions and quantum spin liquids, and more often than not also triggers promising topological properties: Weyl and Dirac points, topological Hall effect, quantized anomalous Hall effect, controllable magneto-optics, and others. This project concentrates on electronic, transport and topological properties of frustrated magnets, using methods of theoretical physics and computational materials science.The goal of this project is to gain microscopic, materials-oriented insight into several novel classes of quantum materials with frustrated magnetism, providing a conceptual framework for design, discovery and application of relevant materials. Analytical modeling and both first principles (density functional theory and beyond) and second-principles (such as Monte-Carlo simulations utilizing first-principles-derived Hamiltonians) calculations will be employed. The research will approach the field of frustrated magnetism from both materials direction and physical effects direction. As such, the project has a potential to transform our understanding of the interplay between electronic structure, electronic topology, chemistry, crystallography and complex magnetic patterns, with an ultimate goal of providing a theoretical framework for synthesizing materials that can shape future technology and quantum information science through the emergent phenomena these materials harbor, applicable for spintronics, dissipationless electronics and quantum computing. This award also supports the PI's educational activities aimed at training undergraduate and graduate students, and a postdoctoral research associate in computational materials science. This training is expected to offer the students and postdoc an excellent opportunity to acquire knowledge in advanced electronic structure methods, state-of-the-art materials modeling techniques, and high-performance computing, which are essential for their future employment in academia or industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项支持理解量子材料和与受挫磁性相关的现象的理论研究,受挫磁性是指具有竞争倾向的磁性材料,以呈现不同且相互排斥的磁序,从而导致不同的宏观磁性行为。由于磁挫败而带来的额外复杂性使得此类材料的理论和计算研究相当具有挑战性,并且许多有趣的问题仍未得到解答。然而,出于同样的原因,磁阻材料具有新颖的物理特性,这既具有基础性又具有潜在的技术意义。该项目旨在通过理论物理和计算材料科学方法的共同努力,在对此类材料的微观物理的概念理解方面取得新进展。理论和计算研究将与研究相同材料的实验小组密切合作进行。该奖项还支持PI旨在培训本科生和研究生以及计算材料科学博士后研究员的教育活动。此次培训预计将为学生和博士后提供获取先进电子结构方法、最先进的材料建模技术和高性能计算知识的绝佳机会,这对于他们未来在学术界或工业界的就业至关重要。技术摘要该奖项支持理解量子材料和与受挫磁性相关的现象的理论研究。磁挫败是斯格明子和量子自旋液体概念的核心,并且通常还会引发有希望的拓扑特性:韦尔和狄拉克点、拓扑霍尔效应、量子化反常霍尔效应、可控磁光等。该项目利用理论物理和计算材料科学的方法,专注于受挫磁体的电子、输运和拓扑特性。该项目的目标是获得对几种新型受挫磁性量子材料的微观、面向材料的洞察,提供相关材料的设计、发现和应用的概念框架。将采用分析建模以及第一原理(密度泛函理论及其他)和第二原理(例如利用第一原理导出的哈密顿量的蒙特卡罗模拟)计算。研究将从材料方向和物理效应两个方向来探讨受挫磁领域。因此,该项目有可能改变我们对电子结构、电子拓扑、化学、晶体学和复杂磁性图案之间相互作用的理解,最终目标是为合成可以塑造未来技术和量子信息的材料提供理论框架通过这些材料所蕴含的新兴现象进行科学探索,适用于自旋电子学、无耗散电子学和量子计算。该奖项还支持 PI 旨在培训本科生和研究生以及计算材料科学博士后研究员的教育活动。此次培训预计将为学生和博士后提供获取先进电子结构方法、最先进的材料建模技术和高性能计算知识的绝佳机会,这对于他们未来在学术界或工业界的就业至关重要该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Igor Mazin其他文献

Altermagnetism Then and Now
交替磁学的过去和现在
  • DOI:
    10.1103/physics.17.4
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Igor Mazin
  • 通讯作者:
    Igor Mazin

Igor Mazin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Igor Mazin', 18)}}的其他基金

Collaborative Research: Ab Initio Engineering of Doped-Covalent-Bond Superconductors
合作研究:掺杂共价键超导体从头开始工程
  • 批准号:
    2320074
  • 财政年份:
    2023
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Continuing Grant
EAGER: SUPER: Collaborative Research: Ab Initio Engineering of Doped-Covalent-Bond Superconductors
EAGER:SUPER:合作研究:掺杂共价键超导体的从头工程
  • 批准号:
    2132589
  • 财政年份:
    2021
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Continuing Grant

相似国自然基金

植物特有蛋白FENT响应脱落酸信号调控囊泡运输的分子机制研究
  • 批准号:
    32370329
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
拟南芥TTM3在网格蛋白介导的内吞作用和极性生长素运输中功能的研究
  • 批准号:
    32370325
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
固醇转运蛋白BbScp2介导球孢白僵菌细胞膜脂质运输的分子机制
  • 批准号:
    32302451
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
边界约束下跨境铁路运输连通性格局与影响机制研究
  • 批准号:
    42371177
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
信号分子Sonic hedgehog后高尔基体运输的分子机制
  • 批准号:
    32300589
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Topological signatures in electronic transport
电子传输中的拓扑签名
  • 批准号:
    402840991
  • 财政年份:
    2018
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Research Fellowships
Transport and Thermodynamics in Topological Materials
拓扑材料中的传输和热力学
  • 批准号:
    15K05140
  • 财政年份:
    2015
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
First-principles studies of electronic and transport properties of one-dimensional edge states of nano-structured topological insulators
纳米结构拓扑绝缘体一维边缘态电子和输运特性的第一性原理研究
  • 批准号:
    237672149
  • 财政年份:
    2013
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Priority Programmes
Studies on Electronic and Spin Transport at Topological Surfaces and Edge States
拓扑表面和边缘态的电子和自旋输运研究
  • 批准号:
    25246025
  • 财政年份:
    2013
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Investigation of topological light-transport phenomena by the analogy to electronic systems
通过类比电子系统研究拓扑光传输现象
  • 批准号:
    23540380
  • 财政年份:
    2011
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了