Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
基本信息
- 批准号:2403804
- 负责人:
- 金额:$ 25.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical research on understanding quantum materials and phenomena related to frustrated magnetism, which refers to magnetic materials that have competing tendencies to assume different and mutually exclusive magnetic orders that lead to different macroscopic magnetic behavior. Additional complexity due to magnetic frustration makes theoretical and computational study of such materials rather challenging, and many interesting questions remain unanswered. Yet, for the same reason magnetically frustrated materials feature novel physical properties, which are of both fundamental and potential technological interest. This project is aimed at achieving new advances in conceptual understanding of the microscopic physics of such materials through a combined effort of theoretical physics and computational materials science approaches. The theoretical and computational research will proceed in close collaboration with experimental groups studying the same materials.This award also supports the PI's educational activities aimed at training undergraduate and graduate students, and a postdoctoral research associate in computational materials science. This training is expected to offer the students and postdoc an excellent opportunity to acquire knowledge in advanced electronic structure methods, state-of-the-art materials modeling techniques, and high-performance computing, which are essential for their future employment in academia or industry. TECHNICAL SUMMARYThis award supports theoretical research on understanding quantum materials and phenomena related to frustrated magnetism. Magnetic frustration lies at the core of the notion of skyrmions and quantum spin liquids, and more often than not also triggers promising topological properties: Weyl and Dirac points, topological Hall effect, quantized anomalous Hall effect, controllable magneto-optics, and others. This project concentrates on electronic, transport and topological properties of frustrated magnets, using methods of theoretical physics and computational materials science.The goal of this project is to gain microscopic, materials-oriented insight into several novel classes of quantum materials with frustrated magnetism, providing a conceptual framework for design, discovery and application of relevant materials. Analytical modeling and both first principles (density functional theory and beyond) and second-principles (such as Monte-Carlo simulations utilizing first-principles-derived Hamiltonians) calculations will be employed. The research will approach the field of frustrated magnetism from both materials direction and physical effects direction. As such, the project has a potential to transform our understanding of the interplay between electronic structure, electronic topology, chemistry, crystallography and complex magnetic patterns, with an ultimate goal of providing a theoretical framework for synthesizing materials that can shape future technology and quantum information science through the emergent phenomena these materials harbor, applicable for spintronics, dissipationless electronics and quantum computing. This award also supports the PI's educational activities aimed at training undergraduate and graduate students, and a postdoctoral research associate in computational materials science. This training is expected to offer the students and postdoc an excellent opportunity to acquire knowledge in advanced electronic structure methods, state-of-the-art materials modeling techniques, and high-performance computing, which are essential for their future employment in academia or industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要这一奖项支持理论研究,了解与沮丧的磁性有关的量子材料和现象,这是指具有竞争趋势的磁性材料,以实现不同的和相互排斥的磁性阶,从而导致不同的宏观磁性行为。由于磁性挫败感引起的额外复杂性使得对此类材料的理论和计算研究更具挑战性,许多有趣的问题仍未得到解决。然而,出于同样的原因,磁性沮丧的材料具有新颖的物理特性,它们具有基本和潜在的技术兴趣。该项目旨在通过理论物理学和计算材料科学方法的综合努力来概念上了解此类材料的微观物理学的新进展。理论和计算研究将与研究相同材料的实验组密切合作进行。该奖项还支持PI的教育活动,旨在培训本科生和研究生,以及计算材料科学的博士后研究助理。预计该培训将为学生和博士后提供一个很好的机会,以获取先进的电子结构方法,最先进的材料建模技术和高性能计算的知识,这对于他们在学术界或行业中的未来就业至关重要。技术摘要这一奖项支持有关理解量子材料和与沮丧磁性有关的现象的理论研究。磁性挫败感在于天际和量子自旋液体概念的核心,并且通常往往触发有希望的拓扑特性:Weyl和Dirac点,拓扑厅效应,量化异常的霍尔效应,可控的磁磁镜以及其他。该项目使用理论物理学和计算材料科学的方法集中在挫折磁铁的电子,传输和拓扑特性上。该项目的目的是获得微观的,面向材料的洞察力,以对几种具有沮丧的磁性的新型量子材料,为您提供概念上的框架,以设计和应用相关材料的概念框架。分析建模以及第一原理(密度功能理论及以后)和第二原理(例如利用第一原理衍生的哈密顿量的蒙特卡洛模拟)计算。这项研究将从材料方向和物理效应方向上接近沮丧的磁性领域。因此,该项目有可能改变我们对电子结构,电子拓扑,化学,晶体学和复杂磁性模式之间相互作用的理解,其最终目标是为合成可以塑造未来技术和量子信息科学的理论框架,这些材料通过这些材料通过这些材料,适用于源自生物学,销售,销售,销售,电子量和量子化的材料。该奖项还支持PI的教育活动,旨在培训本科生和研究生,以及计算材料科学的博士后研究助理。预计该培训将为学生和博士后提供一个很好的机会,以获取先进的电子结构方法,最先进的材料建模技术和高性能计算的知识,这对于他们在学术界或行业中的未来就业至关重要。该奖项反映了NSF的法定任务,并通过使用基金会的智力效果和宽阔的范围来评估支持NSF的法定任务,并值得评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Mazin其他文献
Altermagnetism Then and Now
交替磁学的过去和现在
- DOI:
10.1103/physics.17.4 - 发表时间:
2024 - 期刊:
- 影响因子:1.6
- 作者:
Igor Mazin - 通讯作者:
Igor Mazin
Igor Mazin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Mazin', 18)}}的其他基金
Collaborative Research: Ab Initio Engineering of Doped-Covalent-Bond Superconductors
合作研究:掺杂共价键超导体从头开始工程
- 批准号:
2320074 - 财政年份:2023
- 资助金额:
$ 25.85万 - 项目类别:
Continuing Grant
EAGER: SUPER: Collaborative Research: Ab Initio Engineering of Doped-Covalent-Bond Superconductors
EAGER:SUPER:合作研究:掺杂共价键超导体的从头工程
- 批准号:
2132589 - 财政年份:2021
- 资助金额:
$ 25.85万 - 项目类别:
Continuing Grant
相似国自然基金
囊泡运输相关蛋白FAM91A1与TBC1D23突变引起脑桥小脑发育不全症的机制
- 批准号:32300578
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
苹果砧木miRLn47砧穗间运输调控耐盐性机制研究
- 批准号:32302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
拟南芥TTM3在网格蛋白介导的内吞作用和极性生长素运输中功能的研究
- 批准号:32370325
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数据驱动的集装箱甩挂运输问题研究
- 批准号:72372087
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
无人码头场景下集装箱运输车自动驾驶关键理论与技术
- 批准号:62333017
- 批准年份:2023
- 资助金额:228 万元
- 项目类别:重点项目
相似海外基金
Topological signatures in electronic transport
电子传输中的拓扑签名
- 批准号:
402840991 - 财政年份:2018
- 资助金额:
$ 25.85万 - 项目类别:
Research Fellowships
Transport and Thermodynamics in Topological Materials
拓扑材料中的传输和热力学
- 批准号:
15K05140 - 财政年份:2015
- 资助金额:
$ 25.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
First-principles studies of electronic and transport properties of one-dimensional edge states of nano-structured topological insulators
纳米结构拓扑绝缘体一维边缘态电子和输运特性的第一性原理研究
- 批准号:
237672149 - 财政年份:2013
- 资助金额:
$ 25.85万 - 项目类别:
Priority Programmes
Studies on Electronic and Spin Transport at Topological Surfaces and Edge States
拓扑表面和边缘态的电子和自旋输运研究
- 批准号:
25246025 - 财政年份:2013
- 资助金额:
$ 25.85万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Investigation of topological light-transport phenomena by the analogy to electronic systems
通过类比电子系统研究拓扑光传输现象
- 批准号:
23540380 - 财政年份:2011
- 资助金额:
$ 25.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)