Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
基本信息
- 批准号:2403135
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-10-01 至 2028-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the rapidly evolving digital world, creating high-performance and efficient computer hardware is crucial. Electronic design automation (EDA), a process that automates and optimizes the design of hardware, becomes even more critical and challenging with the ever-increasing complexity increases. This project introduces a novel approach to EDA, by solving circuit optimization problems with a blend of formal methods, machine learning, and parallel computing. This proposed research aims to transform the way computer chips are made, making the design process faster, less expensive, and more adaptable. The research findings and tools will be made publicly available to facilitate technology transfers and industry-academia interactions in a multidisciplinary community. The research findings and tools will be made publicly available to support technology transfers and interactions between industry and academia in a multidisciplinary community. This effort will also include active participation in educational and workforce development initiatives, involving high-school students and students from underrepresented groups.In addressing the inherent limitations of existing synthesis solutions, such as unfavorable speed-quality trade-offs and inflexibility in leveraging domain knowledge, the presented research introduces a novel strategy that combines formal techniques with learning-based optimization. Specifically, the research takes a radically different approach by creating differentiable hardware synthesis techniques that are well-suited for heterogeneous computing. The key strategy involves the combination of formal techniques with learning-based optimization, which facilitates efficient global optimization, with or without the need for training data, while taking advantage of the computational power of parallel computing devices like graphics processing units (GPUs). This new approach distinguishes itself from conventional methods by its ability to scale global optimization through parallel computing resources, as well as its potential to combine other machine learning models to enable data-driven optimization via back-propagation. The developed algorithms and software will be made open-source and publicly accessible with comprehensive tutorials and educational materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在快速发展的数字世界中,创建高性能和高效的计算机硬件至关重要。电子设计自动化(EDA)是自动化和优化硬件设计的过程,随着不断增长的复杂性而变得更加至关重要和具有挑战性。该项目通过将正式方法,机器学习和并行计算的混合物解决电路优化问题介绍了一种新颖的EDA方法。这项拟议的研究旨在改变制造计算机芯片的方式,从而使设计过程更快,更便宜且更适合。研究发现和工具将公开使用,以促进多学科社区中的技术转移和行业 - academia互动。研究发现和工具将公开使用,以支持多学科社区中行业和学术界之间的技术转移和互动。这项工作还将包括积极参与教育和劳动力发展计划,涉及高中生的学生和来自代表性不足的小组的学生。在解决现有合成解决方案的固有局限性,例如不利的速度质量折衷以及在利用领域知识中的不利速度质量折衷和不利于的稳健性,介绍的研究介绍了一种与学习基础技术相结合的新型策略。具体而言,该研究通过创建适合异质计算的可区分硬件合成技术来采用根本不同的方法。关键策略涉及形式技术与基于学习的优化的组合,这有助于有效的全球优化,无论是否需要培训数据,同时利用了平行计算设备(例如图形处理单元(GPU))的计算能力。这种新方法通过其通过并行计算资源扩展全局优化的能力以及将其他机器学习模型相结合以通过反向传播来启用数据驱动优化的潜力来区别于常规方法。已开发的算法和软件将通过全面的教程和教育材料进行开源,并可以公开访问。该奖项反映了NSF的法定任务,并认为使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiru Zhang其他文献
Behavioral synthesis with activating unused flip-flops for reducing glitch power in FPGA
通过激活未使用的触发器来降低 FPGA 中的毛刺功率的行为综合
- DOI:
10.1109/aspdac.2008.4483919 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
C. Hsieh;J. Cong;Zhiru Zhang;Shih - 通讯作者:
Shih
Architecture and compilation for data bandwidth improvement in configurable embedded processors
可配置嵌入式处理器中数据带宽改进的架构和编译
- DOI:
10.5555/1129601.1129639 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
J. Cong;Guoling Han;Zhiru Zhang - 通讯作者:
Zhiru Zhang
Rosetta : A Realistic Benchmark Suite for Software Programmable FPGAs
Rosetta:软件可编程 FPGA 的现实基准套件
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Udit Gupta;Steve Dai;Zhiru Zhang - 通讯作者:
Zhiru Zhang
Experiences Using the RISC-V Ecosystem to Design an Accelerator-Centric SoC in TSMC 16nm
使用 RISC-V 生态系统在 TSMC 16nm 中设计以加速器为中心的 SoC 的经验
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
T. Ajayi;Khalid Al;Aporva Amarnath;Steve Dai;S. Davidson;Paul Gao;Gai Liu;Anuj Rao;A. Rovinski;Ning;Christopher Torng;Luis Vega;Bandhav Veluri;Shaolin Xie;Chun Zhao;Ritchie Zhao;C. Batten;R. Dreslinski;Rajesh K. Gupta;M. Taylor;Zhiru Zhang - 通讯作者:
Zhiru Zhang
Formal Verification of Source-to-Source Transformations for HLS
HLS 源到源转换的形式验证
- DOI:
10.1145/3626202.3637563 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
L. Pouchet;Emily Tucker;Niansong Zhang;Hongzheng Chen;Debjit Pal;Gabriel Rodríguez;Zhiru Zhang - 通讯作者:
Zhiru Zhang
Zhiru Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhiru Zhang', 18)}}的其他基金
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
- 批准号:
2212371 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Collaborative Research: FMitF: Track I: DeepSmith: Scheduling with Quality Guarantees for Efficient DNN Model Execution
合作研究:FMitF:第一轨:DeepSmith:为高效 DNN 模型执行提供质量保证的调度
- 批准号:
2019306 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Architectural Synthesis for Programmable Accelerators
SHF:小型:可编程加速器的架构综合
- 批准号:
1909661 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAPA: Collaborative Research: A Multi-Paradigm Programming Infrastructure for Heterogeneous Architectures
CAPA:协作研究:异构架构的多范式编程基础设施
- 批准号:
1723715 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
STARSS: Small: Automatic Synthesis of Verifiably Secure Hardware Accelerators
STARSS:小型:自动合成可验证安全的硬件加速器
- 批准号:
1618275 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Synthesizing Highly Efficient Hardware Accelerators for Irregular Programs: A Synergistic Approach
职业:为不规则程序合成高效硬件加速器:一种协同方法
- 批准号:
1453378 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant