Conference: GAeL 2023 (Geometrie Algebrique en Liberte)

会议:GAeL 2023(Geometrie Algebrique en Liberte)

基本信息

  • 批准号:
    2309424
  • 负责人:
  • 金额:
    $ 1.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

This grant will provide partial funding for participants in the international algebraic geometry conference Géométrie Algébrique en Liberté (GAeL) taking place from July 3 - July 7, 2023 in Warwick (UK). GAeL is an annual conference in algebraic geometry focused on promoting the careers of young researchers in the field, and it is unique among major conferences in the organization is nearly entirely managed by junior researchers. This will be the 30th year of the GAeL conference. GAeL has always been held in a European country, and funding is traditionally focused on participants coming from European based institutions. However, the professional development opportunities offered by the conference are compelling for US-based participants as well, and funding from this grant will be used to enable junior researchers at US institutions to participate in the conference.GaEL XXX will bring together many leading experts on range of topics within Algebraic Geometry, providing an excellent opportunity for junior mathematicians to learn about major new developments.The conference includes 3 senior speakers each giving 4 hour mini-courses, as well as a range of opportunities (short talks and poster sessions) for junior participants to present their own research in front of an international audience. The mini-courses are an opportunity to learn about cutting edge results and techniques, and they cover 3 distinct areas of algebraic geometry: Mori Dream Spaces and quiver GIT; Specialization techniques in the study of curves; and Kawamata log terminal singularities. This conference is an excellent career opportunity for junior mathematicians entering algebraic geometry, due to the exposition on cutting-edge research and the new professional connections that are often made at the poster session and various social events. Further information can be found at the conference website: https://sites.google.com/view/gaelxxx/home?authuser=0This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Erman其他文献

Linear strands of multigraded free resolutions
多级自由分辨率的线性链
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Michael K. Brown;Daniel Erman
  • 通讯作者:
    Daniel Erman
Secant varieties of P2 × Pn embedded by O(1, 2)
由 O(1, 2) 嵌入的 P2 × Pn 的割线簇
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dustin Cartwright;Daniel Erman;Luke Oeding
  • 通讯作者:
    Luke Oeding
Conjectures and Computations about Veronese Syzygies
关于 Veronese Syzygies 的猜想和计算
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Juliette Bruce;Daniel Erman;Steve Goldstein;Jay Yang
  • 通讯作者:
    Jay Yang
REGULARITY OF PRIME IDEALS
素理想的正则性
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason Mccullough;Daniel Erman;Wenbo Niu
  • 通讯作者:
    Wenbo Niu

Daniel Erman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Erman', 18)}}的其他基金

Multigraded commutative algebra
多级交换代数
  • 批准号:
    2409776
  • 财政年份:
    2023
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Continuing Grant
Multigraded commutative algebra
多级交换代数
  • 批准号:
    2200469
  • 财政年份:
    2022
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Continuing Grant
New Structures in Homological Commutative Algebra
同调交换代数的新结构
  • 批准号:
    1902123
  • 财政年份:
    2019
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Continuing Grant
Macaulay2 Programming Workshop
Macaulay2 编程研讨会
  • 批准号:
    1812462
  • 财政年份:
    2018
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Standard Grant
Asymptotic Commutative Algebra and Multigraded Syzygies
渐近交换代数和多级 Syzygies
  • 批准号:
    1601619
  • 财政年份:
    2016
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Continuing Grant
Theory and Applications of Syzygies
Syzygies的理论与应用
  • 批准号:
    1501249
  • 财政年份:
    2015
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Standard Grant
Conference: Upper Midwest Commutative Algebra Colloquium; University of Wisconsin; November 14, 2015; University of Minnesota; April 2016
会议:上中西部交换代数座谈会;
  • 批准号:
    1549554
  • 财政年份:
    2015
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Standard Grant
The structure of free resolutions in commutative algebra and algebraic geometry
交换代数和代数几何中自由解析的结构
  • 批准号:
    1302057
  • 财政年份:
    2013
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1003997
  • 财政年份:
    2010
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Fellowship Award

相似国自然基金

涡旋拉盖尔-高斯光驱动的激光等离子体参量不稳定性
  • 批准号:
    12375243
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于拉盖尔-高斯模的多天线系统电磁涡旋信道建模研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    40 万元
  • 项目类别:
    地区科学基金项目
基于拉盖尔高斯模式的量子关联成像理论及应用研究
  • 批准号:
    11904303
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
周期极化铌酸锂晶体中高质量拉盖尔-高斯光束的非线性产生及调控
  • 批准号:
    11874213
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
典型李群酉表示的强盖尔范德对分歧律
  • 批准号:
    11801579
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: GAeL XXXI (Geometrie Algebrique en Liberte)
会议:GAeL XXXI(自由几何代数)
  • 批准号:
    2408333
  • 财政年份:
    2024
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Standard Grant
Geometrie Algebrique en Liberte, GAeL
自由几何代数,GAeL
  • 批准号:
    1101380
  • 财政年份:
    2011
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了