Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models

合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析

基本信息

  • 批准号:
    2308680
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Climate profoundly influences the severity and frequency of extreme phenomena like large wildfires, heatwaves, floods, and droughts. Resilience to the most dramatic effects of climate change requires an understanding of extreme events under future climate conditions. Climate models are invaluable tools for interrogating the dynamics of the Earth system, but they have shortcomings with respect to extreme event analysis. First, the behavior of extremes of many meteorological variables shows a profound mismatch compared to real-life observations. Second, they live in gridded spaces that must be reconciled with the continuous world in which observations are made and for which risk analysis is performed. To resolve these two difficulties, we will model weather phenomena in their native real-world domain, leveraging information from representations of large-scale patterns from climate models, in a way that preserves realistic properties of extreme events. The project also provides research training opportunities for graduate students. PI will focus on two main research aims, which develop and apply analytical tools that turn climate model output into a realistic analysis of extreme events. First, this project will develop models, and associated model-fitting software, that leverage dynamically-derived large-scale features from climate model output to inform stochastic process descriptions of local extreme meteorological phenomena in continuous space. This will require two interconnected modeling components: 1) a stochastic analogue model to link climate model output in gridded space to extreme spatial events in continuous space, and 2) a stochastic process model, conditional on the analogue model, that realistically represents spatial tail dependence. Second, this project will generate model-based projections of extreme events for use in impact analysis. Random draws from the model developed in the first research aim, conditional on climate model projections of large-scale features, functionally constitute an extreme weather generator. PI will use these random draws as inputs to one of the two impact models: precipitation draws feed into a hydrology model to project pluvial flood risks, and wind, temperature, and precipitation draw feed into a fire spread model to project wildfire risk. The software implementation of their model will produce stochastic draws of potential future climate variables that have realistic tail behavior, which can be used downstream as inputs to other numerical models that directly aid in risk assessment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气候深刻地影响着大型野火、热浪、洪水和干旱等极端现象的严重程度和频率。要抵御气候变化最严重的影响,需要了解未来气候条件下的极端事件。气候模型是研究地球系统动态的宝贵工具,但它们在极端事件分析方面存在缺陷。首先,许多气象变量的极端行为与现实生活中的观测结果严重不匹配。其次,它们生活在网格空间中,必须与进行观察和进行风险分析的连续世界相协调。为了解决这两个问题,我们将利用气候模型中大规模模式表示的信息,以保留极端事件的真实属性的方式,在其真实世界领域对天气现象进行建模。该项目还为研究生提供研究培训机会。 PI 将重点关注两个主要研究目标,即开发和应用分析工具,将气候模型输出转化为对极端事件的现实分析。首先,该项目将开发模型和相关的模型拟合软件,利用气候模型输出动态导出的大规模特征,为连续空间中局部极端气象现象的随机过程描述提供信息。 这将需要两个相互关联的建模组件:1)随机模拟模型,将网格空间中的气候模型输出与连续空间中的极端空间事件联系起来;2)随机过程模型,以模拟模型为条件,真实地表示空间尾部依赖性。其次,该项目将生成基于模型的极端事件预测,用于影响分析。 从第一个研究目标中开发的模型中随机抽取,以大尺度特征的气候模型预测为条件,在功能上构成了一个极端天气发生器。 PI 将使用这些随机抽取作为两个影响模型之一的输入:降水将输入水文模型以预测雨洪风险,风、温度和降水将输入火蔓延模型以预测野火风险。他们的模型的软件实现将产生具有现实尾部行为的潜在未来气候变量的随机抽取,这些变量可以在下游用作直接帮助风险评估的其他数值模型的输入。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Shaby其他文献

Benjamin Shaby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Shaby', 18)}}的其他基金

Collaborative Research: Combining Heterogeneous Data Sources to Identify Genetic Modifiers of Diseases
合作研究:结合异质数据源来识别疾病的遗传修饰因素
  • 批准号:
    2309825
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Combining Heterogeneous Data Sources to Identify Genetic Modifiers of Diseases
合作研究:结合异质数据源来识别疾病的遗传修饰因素
  • 批准号:
    2223133
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CAREER: Hierarchical Models for Spatial Extremes
职业:空间极值的层次模型
  • 批准号:
    2001433
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Workshop on Risk Analysis for Extremes in the Earth System
地球系统极端事件风险分析研讨会
  • 批准号:
    1932751
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: Hierarchical Models for Spatial Extremes
职业:空间极值的层次模型
  • 批准号:
    1752280
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Workshop on Climate and Weather Extremes
气候和极端天气研讨会
  • 批准号:
    1651714
  • 财政年份:
    2016
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

兼容等温扩增的双CRISPR/Cas12方法体系构建及其多重精准监测肉及肉制品食用安全的应用研究
  • 批准号:
    82373629
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
硫酸盐还原菌快速分型光电化学Cas14a传感机制的研究
  • 批准号:
    42306225
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于内源CRISPR/Cas与模块化报告系统的多杀菌素调控机制与高产策略研究
  • 批准号:
    32370064
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于CRISPR/Cas系统的活细胞内特异性mRNA标志物的单分子成像分析研究
  • 批准号:
    22304008
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
通过构建Pgr-Cas9工具小鼠研究Hippo通路效应因子Yap1/Wwtr1在蜕膜化过程中的作用
  • 批准号:
    32370913
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347912
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347913
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400165
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400166
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243099
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了