B2: Learning Environments with Augmentation and Robotics for Next-gen Emergency Responders (LEARNER)

B2:为下一代应急响应人员提供增强和机器人技术的学习环境(学习者)

基本信息

  • 批准号:
    2349138
  • 负责人:
  • 金额:
    $ 499.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

The NSF Convergence Accelerator supports use-inspired, team-based, multidisciplinary efforts that address challenges of national importance and will produce deliverables of value to society in the near future.The broader impact and potential societal benefits of this Convergence Accelerator Phase II project will be to generate technology-based learning solutions that can support and augment the performance and safety of emergency response (ER) personnel. Academic researchers, core-technology developers, stakeholders, and an advisory board constituted of leaders from industry and government will come together to assess opportunities and challenges related to the use of human augmentation technologies (HATs) that can transform the process of foundational, use-inspired solution-finding for ER work, and in a way that is transferable to other work contexts as well. This will involve the development and evaluation of LEARNER (Learning Environments with Augmentation and Robotics for Next-gen Emergency Responders), a mixed-reality learning environment with physical, augmented, and virtual reality components, for users to learn to work effectively with two HAT classes: powered exoskeletons (EXO) and head-worn AR interfaces (AR). Our effort will contribute to better conceptualize convergence work that can foster the understanding of reciprocal human-technology interactions; contribute to systems that are tailored, optimized, and continuously adapted for humans and their environments; and education and lifelong learning to create the requisite workforce. Our effort will also serve as a model for other research communities that can benefit from working across traditional disciplinary boundaries in engineering, computer science, learning sciences, and human resource development. We will share our methods, learnings and findings with the ER community and the wider world by leading a National Talent Ecosystem Council, a collaborative think-tank organization, to support scientific research activities on workforce learning with advanced technologies and organizing Learn-X symposiums on the topic of technology-driven advances in learning-sciences and educational/human resource development.We will develop and evaluate a functional prototype of LEARNER – an innovative accessible, modular, personalized, and scalable learning platform to accelerate skilling and reskilling of ER workers, particularly on nascent augmentation technologies that have significant potential to change the very nature of work and improve efficiency, health, and well-being. LEARNER will provide a unique training paradigm by incorporating physiological, neurological, and behavioral markers of learning into real-time scenario evolution. The proposed virtual and physical user interfaces and interaction techniques will advance the human-computer interaction field by providing a multisensory approach for ER simulation and synchronized virtual interactions with physical environments and work artifacts. Furthermore, our plan to field these HATs and develop an effective learning platform has significant transformative potential as EXOs and AR will enable users to formulate new work strategies at the individual and team levels enabled by their newly extended physical and perceptual capabilities. Finally, our work will advance learning by creating a scalable and replicable platform that will increase the speed of integration and adoption of innovative and emerging HATs that benefit the future workforce across diverse industrial sectors. Our transdisciplinary approach converges and enhances the existing knowledge from the disciplines of learning science, computer science, virtual and augmented realities, human factors, cognitive psychology, and systems engineering to create the LEARNER platform that integrates training course design, innovative and emerging technology implementation, and new techniques of work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF融合加速器支持采用的,基于团队的多学科努力,这些努力应对国家重要性的挑战,并将在不久的将来为社会带来价值的可交付成果。这种融合加速器II阶段项目的更广泛的影响和潜在的社会益处将是为了产生基于技术的学习解决方案,以支持和增强绩效和安全响应的绩效和安全性(ER)人员(ER)人员(ER)。学术研究人员,核心技术开发人员,利益相关者和顾问委员会由工业和政府的领导人组成,将共同评估与使用人类增强技术(HATS)有关的机遇和挑战,这些技术(HATS)可以改变基础,使用启发性的解决方案的急诊工作,并以某种方式转移到其他工作环境中。这将涉及学习者的开发和评估(对于下一代应急人员的增强和机器人技术的学习环境),一种具有物理,增强和虚拟现实组件的混合真实学习环境,使用户能够学会与两个帽子类别的类别合作:有效的外exoskeletons(EXO)(EXO)和worn worn worn Ar Interfaces(AR)。我们的努力将有助于更好地概念化融合工作,从而促进对互惠人类技术相互作用的理解;为量身定制,优化和不断适应人类及其环境的系统做出贡献;以及教育和终身学习创造必要的劳动力。我们的努力还将成为其他研究社区的模型,这些研究社区可以从工程,计算机科学,学习科学和人力资源开发方面的传统学科界限中受益。我们将通过领导国家人才生态系统委员会(一个协作智障组织)来支持与先进技术的劳动力学习有关的科学研究活动,并组织学习型驱动力驱动的学习和人类资源开发方面的主题,我们将开发技术/人类资源的发展,我们将在Instripation Insportiational fromptigation frompticts of inteptys of Farmity offictation,我们将与ER社区和更广阔的世界分享我们的方法,学习和发现,以支持劳动力学习的科学研究活动。个性化且可扩展的学习平台,以加速ER工人的技能和重新运输,尤其是在新生的增强技术上,这些技术具有改变工作本质并提高效率,健康和福祉的巨大潜力。学习者将通过将学习的身体,神经和行为标志物纳入实时场景演变来提供独特的培训范式。所提出的虚拟和物理用户界面以及交互技术将通过为ER模拟和与物理环境和工作工件同步的多感觉方法来推动人类计算机的交互字段。此外,我们计划戴上这些帽子并开发有效的学习平台具有巨大的变革潜力,因为Exos和AR将使用户能够通过其新扩展的物理和感知能力来为个人和团队级别制定新的工作策略。最后,我们的工作将通过创建一个可扩展且可复制的平台来提高学习,我们将提高整合和采用创新和新兴帽子的速度,从而使潜水员工业部门的未来劳动力受益。我们的跨学科方法从学习科学,计算机科学,虚拟和增强现实,人为因素,人为因素,认知心理学和系统工程的学科中融合并增强了现有知识,以创建学习平台,从而使培训课程设计,创新和新兴的技术实施,以及工作的新技术集成了范围的新技术。影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ranjana Mehta其他文献

Ranjana Mehta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ranjana Mehta', 18)}}的其他基金

CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
  • 批准号:
    2343187
  • 财政年份:
    2023
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Continuing Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2343183
  • 财政年份:
    2023
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Standard Grant
B2: Learning Environments with Augmentation and Robotics for Next-gen Emergency Responders (LEARNER)
B2:为下一代应急响应人员提供增强和机器人技术的学习环境(学习者)
  • 批准号:
    2033592
  • 财政年份:
    2020
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Cooperative Agreement
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
  • 批准号:
    2013122
  • 财政年份:
    2020
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
  • 批准号:
    1900704
  • 财政年份:
    2019
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Continuing Grant
RAPID: Human-Robotic Interactions During Harvey Recovery Operations
RAPID:哈维恢复操作期间的人机交互
  • 批准号:
    1760479
  • 财政年份:
    2017
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Standard Grant

相似国自然基金

开放环境下终身强化学习方法研究及应用
  • 批准号:
    62376122
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
通信环境下复杂非线性系统的自适应强化学习控制及其应用
  • 批准号:
    62373113
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
社交媒体环境下基于深度强化学习的适应性在线资产配置策略研究
  • 批准号:
    72371080
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于机器学习方法的土壤多孔介质中EPFRs环境行为与生态毒性研究
  • 批准号:
    42377385
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
异构数据环境中分布式在线学习研究
  • 批准号:
    62306138
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: Community-Soil-Air-Water: A Geoscience Learning Ecosystem for Urban Environments
REU 网站:社区-土壤-空气-水:城市环境的地球科学学习生态系统
  • 批准号:
    2348995
  • 财政年份:
    2024
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Standard Grant
CAREER: Transforming Peer Code Review Environments for Code Learning and High-Quality Feedback
职业:转变同行代码审查环境以实现代码学习和高质量反馈
  • 批准号:
    2340389
  • 财政年份:
    2024
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Continuing Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
  • 批准号:
    2311990
  • 财政年份:
    2023
  • 资助金额:
    $ 499.83万
  • 项目类别:
    Standard Grant
Learning and Living with Wildfire Smoke: Creating Clean Air Environments in Schools through Youth Participatory Action Research
与野火烟雾一起学习和生活:通过青年参与行动研究在学校创造清洁的空气环境
  • 批准号:
    10662674
  • 财政年份:
    2023
  • 资助金额:
    $ 499.83万
  • 项目类别:
Bioethical Issues Associated with Objective Behavioral Measurement of Children with Hearing Loss in Naturalistic Environments
与自然环境中听力损失儿童的客观行为测量相关的生物伦理问题
  • 批准号:
    10790269
  • 财政年份:
    2023
  • 资助金额:
    $ 499.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了