Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance

合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性

基本信息

  • 批准号:
    2307222
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Antibiotic resistant bacteria ("superbugs") are considered one of the greatest challenges facing humanity in the 21st century. In the U.S., more than 23,000 deaths per year are associated with antibiotic resistant bacteria, and approximately $55 billion is spent annually to combat antibiotic resistance. The spread of antibiotic resistant bacteria is causing global concern that we may be returning to a pre-antibiotic era. Resistance to antibiotics is carried by the genetic materials of bacteria called antibiotic resistance genes. These emerging contaminants are being rapidly transmitted in built environments such as wastewater treatment plants. Recent studies are exploring the feasibility of using new approaches and materials, such as carbon nanomaterials, to remove antibiotic resistance genes. Despite the great potential, previous studies consistently report inefficient removal due to a lack of in-depth understanding of the interactions between antibiotic resistance genes and carbon nanomaterials. The goal of this project is to understand the fundamental chemistry when antibiotic resistance genes interact with carbon nanomaterials. Based on the knowledge gained from this project, a robust carbon nanomaterial-membrane system can be developed and applied to wastewater treatment plants to combat antibiotic resistance. The system is also expected to be broadly applicable to the treatment of various emerging contaminants that are difficult to remove using conventional technologies. In addition to advancing engineering applications and fundamental chemistry, this project will provide educational opportunities for highly motivated, low-income high school students. Undergraduate students from groups traditionally under-represented in STEM will also be involved in the research. This early exposure to research is expected to be transformative in broadening the horizons and academic/career goals of participating students.Antibiotic resistance genes are considered an emerging contaminant and can spread rapidly in the built environment such as municipal wastewater treatment plants. One of the promising approaches to combat antibiotic resistance is the use of carbon nanomaterials to adsorb and degrade antibiotic resistance genes. However, because the effects of their nanoscale properties on adsorption and degradation are not well understood, inefficient removal is consistently reported in the literature. The goal of this project is to develop a mechanistic understanding of the interactions between antibiotic resistance genes and carbon nanomaterials. This goal will be achieved by pursuing three interrelated objectives: 1) understand the interactions with membranes coated with reduced graphene oxide; 2) enhance the electrostatic adsorption of antibiotic resistance genes on the modified membranes; and 3) enhance the electrochemical degradation of antibiotic resistance genes by the modified membranes. By immobilizing carbon nanomaterials on membranes, the interactions are expected to be readily tuned and enhanced with pressure-driven filtration. In addition, the membranes can act as a support layer for carbon nanomaterials to be electrically charged, allowing electrostatic adsorption at anodic potentials as well as reactive oxygen species-induced degradation at cathodic potentials. Alternation of the electrical potential will also result in synergistic interactions. This project is expected to provide insight into the design of nanostructured materials and heterogeneous nanosystems for water and wastewater applications. The "trap-and-zap" strategy (i.e., adsorption followed by degradation) developed in this project is expected to be applicable to the treatment of emerging contaminants in heterogeneous environments. A major benefit of this project will be addressing the societal need for alleviating the ever-growing energy demand for water and wastewater treatment. This project will promote teaching, training, and learning by supporting \high school, undergraduate, and graduate students in research. The principal investigators have been and will continue working closely with the Society of Women Engineers, the National Society of Black Engineers, and the Society of Hispanic Professional Engineers to engage students from groups traditionally under-represented in STEM in research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
抗生素耐药性细菌(“超级细菌”)被认为是 21 世纪人类面临的最大挑战之一。在美国,每年有超过 23,000 人死亡与抗生素耐药性细菌有关,每年大约花费 550 亿美元来对抗抗生素耐药性。抗生素耐药细菌的传播引起了全球的担忧,人们担心我们可能会回到前抗生素时代。对抗生素的耐药性是由细菌的遗传物质(称为抗生素耐药基因)携带的。这些新兴污染物正在废水处理厂等建筑环境中迅速传播。最近的研究正在探索使用新方法和材料(例如碳纳米材料)来去除抗生素抗性基因的可行性。尽管潜力巨大,但之前的研究一致报告,由于缺乏对抗生素抗性基因和碳纳米材料之间相互作用的深入了解,去除效率低下。该项目的目标是了解抗生素抗性基因与碳纳米材料相互作用时的基本化学反应。基于从该项目中获得的知识,可以开发强大的碳纳米材料膜系统并将其应用于废水处理厂以对抗抗生素耐药性。该系统还有望广泛适用于处理使用传统技术难以去除的各种新兴污染物。除了推进工程应用和基础化学之外,该项目还将为积极性高的低收入高中生提供教育机会。来自传统上在 STEM 领域代表性不足的群体的本科生也将参与这项研究。这种早期接触研究预计将在拓宽参与学生的视野和学术/职业目标方面带来变革。抗生素抗性基因被认为是一种新兴污染物,可以在城市污水处理厂等建筑环境中迅速传播。对抗抗生素耐药性的一种有前途的方法是使用碳纳米材料来吸附和降解抗生素耐药性基因。然而,由于它们的纳米级特性对吸附和降解的影响尚不清楚,文献中一致报道了低效去除。该项目的目标是建立对抗生素抗性基因和碳纳米材料之间相互作用的机制理解。这一目标将通过追求三个相互关联的目标来实现:1)了解与涂有还原氧化石墨烯的膜的相互作用; 2)增强抗生素抗性基因在修饰膜上的静电吸附; 3)通过修饰膜增强抗生素抗性基因的电化学降解。通过将碳纳米材料固定在膜上,预计可以通过压力驱动过滤轻松调节和增强相互作用。此外,膜可以充当带电碳纳米材料的支撑层,允许在阳极电位下进行静电吸附,以及在阴极电位下进行活性氧诱导的降解。电势的交替也会导致协同相互作用。该项目预计将为水和废水应用的纳米结构材料和异质纳米系统的设计提供深入的见解。该项目开发的“trap-and-zap”策略(即吸附然后降解)预计适用于异质环境中新兴污染物的处理。该项目的主要好处将是满足缓解水和废水处理不断增长的能源需求的社会需求。 该项目将通过支持高中生、本科生和研究生的研究来促进教学、培训和学习。主要研究人员已经并将继续与女工程师协会、全国黑人工程师协会和西班牙裔专业工程师协会密切合作,让传统上在 STEM 领域代表性不足的群体的学生参与研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heyang Yuan其他文献

Energy Consumption by Recirculation: A Missing Parameter When Evaluating Forward Osmosis.
再循环的能量消耗:评估正渗透时缺少的参数。
  • DOI:
    10.1021/acs.est.6b02849
  • 发表时间:
    2016-06-23
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    S. Zou;Heyang Yuan;Amy E. Childress;Zhen He
  • 通讯作者:
    Zhen He
Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: A review.
将膜过滤集成到生物电化学系统中,作为用于水回收的下一代节能废水处理技术:综述。
  • DOI:
    10.1016/j.biortech.2015.05.058
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Heyang Yuan;Zhen He
  • 通讯作者:
    Zhen He
When Bioelectrochemical Systems Meet Forward Osmosis: Accomplishing Wastewater Treatment and Reuse through Synergy
当生物电化学系统遇上正渗透:协同实现废水处理回用
  • DOI:
    10.3390/w7010038
  • 发表时间:
    2014-12-23
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Yaobin Lu;Mohan Qin;Heyang Yuan;I. Abu;Zhen He
  • 通讯作者:
    Zhen He
Enhancing desalination and wastewater treatment by coupling microbial desalination cells with forward osmosis
通过将微生物脱盐细胞与正向渗透相结合来增强脱盐和废水处理
  • DOI:
    10.1016/j.cej.2015.02.059
  • 发表时间:
    2015-06-15
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Heyang Yuan;I. Abu;Zhen He
  • 通讯作者:
    Zhen He
Linking Population Dynamics to Microbial Kinetics for Hybrid Modeling of Engineered Bioprocesses
将种群动态与微生物动力学联系起来,用于工程生物过程的混合建模
  • DOI:
    10.1101/2021.04.15.440059
  • 发表时间:
    2021-04-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhang Cheng;Shiyun Yao;Heyang Yuan
  • 通讯作者:
    Heyang Yuan

Heyang Yuan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heyang Yuan', 18)}}的其他基金

Collaborative Research: Shedding Light on The Microbial Ecologyand Ecophysiology of Electroactive Anammox Communities
合作研究:揭示电活性厌氧氨氧化群落的微生物生态学和生态生理学
  • 批准号:
    2327515
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Shedding Light on The Microbial Ecologyand Ecophysiology of Electroactive Anammox Communities
合作研究:揭示电活性厌氧氨氧化群落的微生物生态学和生态生理学
  • 批准号:
    2327515
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
EAGER: Chasing the elusive syntrophic partners in direct interspecies electron transfer
EAGER:在直接种间电子转移中追逐难以捉摸的互养伙伴
  • 批准号:
    2128365
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
EAGER: Chasing the elusive syntrophic partners in direct interspecies electron transfer
EAGER:在直接种间电子转移中追逐难以捉摸的互养伙伴
  • 批准号:
    2128365
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307223
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
  • 批准号:
    2231254
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A multi-scale approach to predicting coral disease spread: leveraging an outbreak on coral-dense isolated reefs
合作研究:RAPID:预测珊瑚疾病传播的多尺度方法:利用珊瑚密集的孤立礁石的爆发
  • 批准号:
    2316579
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding the Limitations of Wireless Network Security Designs Leveraging Wireless Properties: New Threats and Defenses in Practice
协作研究:SaTC:核心:小型:了解利用无线特性的无线网络安全设计的局限性:实践中的新威胁和防御
  • 批准号:
    2316720
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging Lived Experiences of Nontraditional Engineering Students to Promote Engaged Student Learning in Technical Classrooms
合作研究:利用非传统工程专业学生的生活经验促进学生在技术课堂上的积极学习
  • 批准号:
    2315764
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了