ERI: Intelligent Modeling and Parameter Selection in Distributed Optimization for Power Networks

ERI:电力网络分布式优化中的智能建模和参数选择

基本信息

项目摘要

This Engineering Research Initiation (ERI) grant will contribute to the advancement of national prosperity, economic welfare, and national security by funding research that addresses the challenge of optimizing large-scale networked systems such as nation’s power system, which is rapidly evolving due to the growing prevalence of renewable energy sources and electric vehicles. This award supports research examining the development of innovative algorithms enabling multiple agents to communicate and collaborate effectively in solving complex network optimization problems while safeguarding individual privacy. By integrating mathematical optimization and engineering, the results of this cross-disciplinary project will benefit academic and industrial researchers, data scientists, and policymakers. The educational and outreach activities seek to inspire STEM students, especially those from underrepresented groups, to explore data-driven methodologies in science and engineering through initiatives like summer research programs.This research creates intelligent modeling and parameter selection methods to address important challenges in distributed optimization (DO), a promising approach for a broad class of complex networked systems such as the quickly evolving modern power networks. This research designs innovative partitioning techniques to improve the slow convergence of DO algorithms. This approach not only simplifies the customization of DO by reducing the number of sub-problems but also imposes desirable structures on the sub-problems. The PI devises adaptive and learning-based strategies to address the pervasive challenge of parameter selection for DO algorithms using both classical parameter selection techniques and learning-based methods, such as physics-informed deep learning. The research will also examine the robustness of DO algorithms to data uncertainty and communication errors. Results will be disseminated through open-source optimization software packages, facilitating the real-world implementation of these innovative algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项工程研究启动(ERI)赠款将通过资助研究来促进国家繁荣,经济福利和国家安全的发展,该研究应对优化大规模网络系统(例如国家电力系统)的挑战,该系统由于可再生能源和电动汽车的普遍性而迅速发展。该奖项支持研究研究创新算法的开发的研究,使多个代理能够在保护复杂的网络优化问题的同时,在维护个人隐私方面进行有效的沟通和协作。通过整合数学优化和工程,该跨学科项目的结果将使学术和工业研究人员,数据科学家和政策制定者受益。教育和宣传活动旨在通过夏季研究计划等计划来激发STEM学生,特别是来自人为群体不足的学生,以探索科学和工程学中的数据驱动方法。这项研究创造了智能建模和参数选择方法,以解决分布式优化(DO)的重要挑战,这是一种为复杂网络的诸如快速竞争的现代网络等广泛的网络类别的有希望的方法。这项研究设计了创新的分区技术,以改善DO算法的缓慢收敛性。这种方法不仅通过减少子问题的数量,而且在子问题上施加理想的结构来简化DO的自定义。 PI设计了使用经典参数选择技术和基于学习的方法,例如物理学深度学习,以解决DO算法的参数选择的普遍挑战,以解决自适应和学习的策略。该研究还将检查DO算法对数据不确定性和通信错误的鲁棒性。结果将通过开源优化软件包来传播,支持这些创新算法的现实实施。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子的优点和更广泛的影响来评估NSF的法定任务,并被认为是宝贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mehdi Karimi其他文献

Efficient Implementation of Interior-Point Methods for Quantum Relative Entropy
量子相对熵内点法的高效实现
  • DOI:
    10.48550/arxiv.2312.07438
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mehdi Karimi;Levent Tunçel
  • 通讯作者:
    Levent Tunçel
Message-Passing Algorithms for Counting Short Cycles in a Graph
用于计算图中短周期的消息传递算法

Mehdi Karimi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

大智慧还是小聪明?绩效压力对创造性绩效的双面效应机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    47 万元
  • 项目类别:
从"聪明基因"NR2B途径探讨α2肾上腺素受体激动剂对血管性痴呆大鼠认知功能的调节作用
  • 批准号:
    81100873
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Physical Object Modeling for Intelligent Systems
职业:智能系统的物理对象建模
  • 批准号:
    2338203
  • 财政年份:
    2024
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Continuing Grant
Transforming Equilibrium Analysis Paradigm for Modeling Transportation Networks with Intelligent Traveling Agents
转变平衡分析范式,利用智能旅行社对交通网络进行建模
  • 批准号:
    2233057
  • 财政年份:
    2023
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Standard Grant
Self-driving laboratories for autonomous exploration of protein sequence space
用于自主探索蛋白质序列空间的自动驾驶实验室
  • 批准号:
    10717598
  • 财政年份:
    2023
  • 资助金额:
    $ 19.75万
  • 项目类别:
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 19.75万
  • 项目类别:
    Continuing Grant
Virtual Reality Train the Trainer (VRT3)
虚拟现实培训师 (VRT3)
  • 批准号:
    10602916
  • 财政年份:
    2023
  • 资助金额:
    $ 19.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了