Illuminating patterns and processes of water quality in U.S. rivers using physics-guided deep learning
使用物理引导的深度学习阐明美国河流的水质模式和过程
基本信息
- 批准号:2346471
- 负责人:
- 金额:$ 44.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-15 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Water quality problems are fundamental, universal challenges in society. Persistent nutrient pollution has caused eutrophication and harmful algal blooms globally, estimated to cost more than 4 billion dollars annually in the United States alone. Nutrient pollution threatens ecosystems and food production. Soil erosion will continue to grow with the global urban population. The United States has spent more than a trillion dollars to improve water quality since 1972, equivalent to annual spending of $100 per American, making clean water arguably one of the most expensive environmental investments, more than the cost of clean air. Understanding water quality dynamics is essential yet has remained a major challenge, partly due to its complex nature and data scarcity. This project aims to improve understanding of water quality dynamics by developing forecasting tools and advancing knowledge on how and why water quality changes under different conditions and places. The outcomes will help policymakers, water managers, and the broader public to make informed decisions that ensure the sustainability of water resources.Despite tremendous progress and efforts in the past decades, water quality measurements have remained arduous and expensive, leading to inconsistent data coverage. Understanding of water quality dynamics therefore is often limited to individual sites. The project aims to determine the patterns of and processes that regulate concentration-discharge relationships of water quality variables across the United States. The project will focus on common water quality variables, including nitrate, total phosphorus, and turbidity (a proxy for total suspended sediment). The project will test whether spatial patterns of concentration-discharge relationships are driven predominantly by land use (relative to other drivers) that regulates hydrological flow paths and source water biogeochemistry. The hypotheses will be tested using Process-Guided Deep Learning integrating traditional Long Short-Term Memory models with reactive transport models. The integration will address the limitations of data scarcity and the "black box" nature of deep learning models, and advance predictive accuracy. The project will also 1) make the reconstructed data publicly available; 2) share the trained models for prediction in unmonitored time, space and future scenarios; 3) create videos to educate stakeholders on how to use the models; and 4) broaden participation in the field of artificial intelligence/machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
水质问题是社会中的基本挑战。持续的营养污染引起了全球富营养化和有害藻类的开花,仅在美国,每年估计每年耗资超过40亿美元。营养污染威胁着生态系统和粮食生产。土壤侵蚀将随着全球城市人口的发展而继续增长。自1972年以来,美国已经花费了超过一万亿美元来提高水质,相当于每位美国人的年支出100美元,这可以说是最昂贵的环境投资之一,而不是清洁空气的成本。了解水质动态是必不可少的,但仍然是一个重大挑战,部分是由于其复杂的性质和数据稀缺。该项目旨在通过开发预测工具并促进有关如何以及为什么在不同条件和地点变化的知识来提高对水质动态的理解。这些结果将有助于决策者,水管理人员和更广泛的公众做出明智的决定,以确保水资源的可持续性。尽管在过去几十年中取得了巨大进展和努力,但水质测量仍然艰巨而昂贵,导致数据覆盖率不一致。因此,了解水质动态通常仅限于单个站点。该项目旨在确定在美国水质变量的调节集中释放关系的模式和过程。该项目将着重于常见的水质变量,包括硝酸盐,总磷和浊度(代理总悬浮沉积物)。该项目将测试浓度分离关系的空间模式是否主要由调节水文流道路和源水生物地球化学的土地使用(相对于其他驱动因素)驱动。假设将使用过程指导的深度学习进行测试,将传统的长期短期记忆模型与反应性传输模型相结合。集成将解决数据稀缺性的局限性和深度学习模型的“黑匣子”性质,并提高预测精度。该项目还将1)公开可用的重建数据; 2)在不受监视的时间,空间和未来情况下共享训练有素的预测模型; 3)创建视频,以教育利益相关者如何使用模型; 4)扩大参与人工智能/机器学习领域。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准被认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Li其他文献
Association of poly(ADP-ribose) polymerase activity in circulating mononuclear cells with myocardial dysfunction in patients with septic shock
- DOI:
10.3760/cma.j.issn.0366-6999.20140378 - 发表时间:
2014-08-05 - 期刊:
- 影响因子:6.1
- 作者:
Li Li;Hu Bangchuan;Yan Jing - 通讯作者:
Yan Jing
Origin of the Enhanced Catalytic Activity of PtM/Pd (111) with Doped Atoms Changing from Chemically Inert Au to Active Os
掺杂原子从化学惰性的 Au 变为活性 Os 增强的 PtM/Pd (111) 催化活性的起源
- DOI:
10.1021/acs.jpcc.7b01624 - 发表时间:
2017 - 期刊:
- 影响因子:3.7
- 作者:
Wang Jun;Liu Dingfang;Li Li;Qi Xueqiang;Xiong Kun;Ding Wei;Chen Siguo;Wei Zidong - 通讯作者:
Wei Zidong
A Cell-Centered Lagrangian Scheme with an Elastic-Perfectly Plastic Solid Riemann Solver for Wave Propagations in Solids
用于固体中波传播的具有完美弹塑性固体黎曼求解器的单元中心拉格朗日方案
- DOI:
10.4208/aamm.oa-2020-0344 - 发表时间:
2022-06 - 期刊:
- 影响因子:1.4
- 作者:
Qian Chen;Li Li;Jin Qi;Zhiqiang Zeng;Baolin Tian;Tiegang Liu - 通讯作者:
Tiegang Liu
Design of Variable-Gain First Order Sliding Mode and its Application to Spacecraft Attitude Synchronization
变增益一阶滑模设计及其在航天器姿态同步中的应用
- DOI:
10.1109/access.2019.2943139 - 发表时间:
2019-09 - 期刊:
- 影响因子:3.9
- 作者:
Zhou Ning;Chen Riqing;Li Li;Wen Guoxing - 通讯作者:
Wen Guoxing
Preparation of Nickel Nanoparticles in Spherical Polyelectrolyte Brush Nanoreactor and Their Catalytic Activity
球形聚电解质刷纳米反应器制备镍纳米粒子及其催化活性
- DOI:
10.1021/ie2017306 - 发表时间:
2011-11 - 期刊:
- 影响因子:0
- 作者:
Zhongming Zhu;Xuhong Guo;Shuang Wu;Rui Zhang;Jie Wang;Li Li - 通讯作者:
Li Li
Li Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Li', 18)}}的其他基金
Collaborative Research: From Peaks To Slopes To Communities, Tropical Glacierized Volcanoes As Sentinels of Global Change: Integrated Impacts On Water, Plants and Elemental Cycling
合作研究:从山峰到斜坡到社区,热带冰川火山作为全球变化的哨兵:对水、植物和元素循环的综合影响
- 批准号:
2317851 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Continuing Grant
Collaborative Research: How roots, regolith, rock and climate interact over decades to centuries — the R3-C Frontier
合作研究:根系、风化层、岩石和气候在数十年至数百年中如何相互作用 - R3-C 前沿
- 批准号:
2121621 - 财政年份:2021
- 资助金额:
$ 44.8万 - 项目类别:
Continuing Grant
Developing digital literacies for second/foreign language teachers
培养第二/外语教师的数字素养
- 批准号:
ES/W000024/1 - 财政年份:2021
- 资助金额:
$ 44.8万 - 项目类别:
Research Grant
SitS: Collaborative Research: Soils are signaling shifts in aggregate life-cycles: What does this mean for water, carbon and climate feedbacks in the Anthropocene?
SitS:合作研究:土壤正在发出总体生命周期变化的信号:这对人类世的水、碳和气候反馈意味着什么?
- 批准号:
2034214 - 财政年份:2021
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Collaborative Research - Digging deeper: Do deeper roots enhance deeper water and carbon fluxes and alter the trajectory of chemical weathering in woody-encroached grasslands?
合作研究 - 深入挖掘:更深的根是否会增强更深的水和碳通量并改变木本侵蚀草原的化学风化轨迹?
- 批准号:
1911960 - 财政年份:2019
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Collaborative Research: Combining complex systems tools, process-based modelling and experiments to bridge scales in low temperature geochemistry
协作研究:结合复杂系统工具、基于过程的建模和实验来弥补低温地球化学的规模
- 批准号:
1724440 - 财政年份:2018
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Collaborative Research: Determining the eco-hydrogeologic response of tropical glacierized watersheds to climate change: An integrated data-model approach
合作研究:确定热带冰川流域对气候变化的生态水文地质响应:综合数据模型方法
- 批准号:
1758795 - 财政年份:2018
- 资助金额:
$ 44.8万 - 项目类别:
Continuing Grant
Redefining Surface Area: Understanding Reactive Interfaces in Heterogeneous Porous Media
重新定义表面积:了解异质多孔介质中的反应界面
- 批准号:
1452007 - 财政年份:2015
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
NSF Workshop: Expanding the role of Reactive Transport Modeling (RTM) within the Biogeochemical Sciences; Washington, DC
NSF 研讨会:扩大反应输运模型 (RTM) 在生物地球化学科学中的作用;
- 批准号:
1414558 - 财政年份:2014
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Effect of Phase Transitions on Bulk Modulus and Bulk Attenuation: Mantle P-T Laboratory Study at Seismic Frequencies
相变对体积模量和体积衰减的影响:地震频率下的地幔 P-T 实验室研究
- 批准号:
0809397 - 财政年份:2008
- 资助金额:
$ 44.8万 - 项目类别:
Continuing Grant
相似国自然基金
微波会切霍尔推力器波场耦合过程及模式转换机理研究
- 批准号:52376023
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
包含电站热排放和氮肥施用对河流氮输送协同影响的陆面过程模式发展及应用
- 批准号:42305178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
篮球运动员动作预期过程中信息整合模式及其认知加工机制
- 批准号:32300915
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
无焰燃烧模式下宽掺比氨煤混烧过程中的C-N交互作用影响机制研究
- 批准号:52306137
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
陆面过程模式中多层植被冠层参数化方案耦合研究
- 批准号:42305134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
From a jack-of-all-trades arise masters of few: uncovering the evolutionary patterns and processes driving multigene family functional diversification
从多才多艺的人中脱颖而出:揭示驱动多基因家族功能多样化的进化模式和过程
- 批准号:
2325341 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Cardiovascular risk and circadian misalignment in short sleepers- role of extended eating period.
短睡眠者的心血管风险和昼夜节律失调——延长进食时间的作用。
- 批准号:
10733844 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Add Health Parent Study: A Biosocial Resource for the Study of Multigenerational Racial/Ethnic Disparities in Alzheimer's Disease and Alzheimer's Disease-Related Dementias (AD/ADRD)
添加健康父母研究:用于研究阿尔茨海默病和阿尔茨海默病相关痴呆 (AD/ADRD) 中多代人种/民族差异的生物社会资源
- 批准号:
10745617 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
CAREER: Phylogenetic scale-dependency of the patterns and processes of quantitative trait evolution
职业:数量性状进化模式和过程的系统发育规模依赖性
- 批准号:
2237613 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Continuing Grant
NSF PRFB FY 2023: Disentangling convergent evolutionary color patterns from underlying ecological processes in the clownfish-sea anemone symbiosis.
NSF PRFB 2023 财年:将趋同进化颜色模式与小丑鱼-海葵共生的潜在生态过程分开。
- 批准号:
2305953 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Fellowship Award