Collaborative Research: NSFGEO-NERC: Understanding surface-to-bed meltwater pathways across the Greenland Ice Sheet using machine-learning and physics-based models
合作研究:NSFGEO-NERC:使用机器学习和基于物理的模型了解格陵兰冰盖的地表到床层融水路径
基本信息
- 批准号:2344690
- 负责人:
- 金额:$ 41.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This is a project jointly funded by the National Science Foundation’s Directorate for Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award recommendation, each Agency funds the proportion of the budget that supports scientists at institutions in their respective countries.It is important to understand how melting ice on the surface of ice sheets, caused by a warming climate, affects the movement of the ice sheets. As the climate warms, melting ice at the surface of ice sheets form ponds of meltwater. In order to have an impact on the movement of the Greenland Ice Sheet, the meltwater must reach and lubricate the bottom of the ice sheet. For example, lakes on the surface of the ice sheet can drain through cracks and reach the bottom of the ice sheet within a few hours. To understand the formation of these cracks and the cause of draining lakes on the Greenland Ice Sheet, we plan to use deep learning, an artificial intelligence algorithm, to find the locations of cracks and draining lakes in satellite imagery. Based on this new dataset, we will use mathematical models to understand the formation of new cracks and their impact on the movement of the ice sheet. Our approach contains an exciting mix of observations and mathematical models. The ability to use artificial intelligence to detect cracks and draining lakes offers opportunities to drive new understandings at the ice-sheet scale. Broader Impacts: This project will support (1) a US-UK collaboration; (2) students and junior scientists; (3) the development of open-source artificial intelligence codes for the Arctic sciences community; (4) the production of a comprehensive and freely available database of the Greenland Ice Sheet cracks and draining lakes; and (5) a community-led mentoring program called COMPACT (COmmunity-led Mentoring Program for Advancing Cryosphere Trainees), which will facilitate multi-mentor networks within the US and UK cryospheric communities for minority doctoral students. Overall, this research will help us understand how ice sheets respond to a changing climate.Meltwater that forms on the surface of the ice sheet can seep through moulins and fractures that connect the surface to the bed, lubricating the bottom of the ice sheet and influencing its dynamics. Surface-to-bed meltwater pathways are prevalent across the Greenland Ice Sheet. However, we currently lack the continent-wide maps of moulins, crevasses, and draining lakes needed to understand the formation of surface-to-bed meltwater pathways. Utilizing deep learning techniques for automated detection and mapping of ice sheet surface features can greatly enhance the glaciology community's capacity to analyze high-resolution satellite imagery, leading to new discoveries. By harnessing deep neural networks, this project aims to generate continent-wide databases of surface features that can be used to mechanistically model the ice sheet conditions that create new surface-to-bed pathways and their impact on ice-sheet dynamics. The ability to scale up feature detection to the ice sheet scale can enrich both remote sensing and modeling communities. This project will foster a US-UK collaboration involving junior principal investigators, postdoctoral researchers, and graduate students. The project aims to develop open-source deep learning code, remote-sensing algorithms, and subglacial hydrology model code for the broader glaciological community. The resulting database of Greenland Ice Sheet surface-to-bed pathway locations and supraglacial lake drainage dates and locations will be made open source. The principal investigators will also collaborate to establish a community-led mentoring program within the US and UK cryospheric community to promote the retention of underrepresented doctoral students and junior faculty/scientists. The societal benefit of this research will be a better understanding of ice sheet processes and an improved ability to predict ice sheet change in a warming climate. Understanding the evolving hydrology of the Greenland Ice Sheet remains an important topic given the unknown, but potentially significant, role that meltwater drainage via hydro-fracture may play in the ice-sheet’s dynamic response to an expanding ablation area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由美国国家科学基金会地球科学理事会 (NSF/GEO) 和英国国家环境研究委员会 (NERC) 通过 NSF/GEO-NERC 牵头机构协议共同资助。美国/英国联合提案将由其研究人员在预算中所占比例最大的机构提交并进行同行评审。在成功联合确定奖励建议后,每个机构将资助支持其机构科学家的预算比例。各自国家。重要的是要了解气候变暖导致冰盖表面融化如何影响冰盖的运动。随着气候变暖,冰盖表面融化的冰会形成融水池。为了影响格陵兰冰盖的运动,融水必须到达并润滑冰盖底部,例如,冰盖表面的湖泊可以在几个小时内通过裂缝排水并到达冰盖底部。 .了解形成为了了解格陵兰冰盖上的这些裂缝和湖泊排水的原因,我们计划使用深度学习(一种人工智能算法)在卫星图像中查找裂缝和排水湖泊的位置。基于这个新数据集,我们将使用数学方法。我们的方法包含了令人兴奋的观察和数学模型的结合,利用人工智能来检测裂缝和排水湖泊,这为推动新的认识提供了机会。冰盖更广泛的影响:该项目将支持(1)美国与英国的合作;(3)为北极科学界开发开源人工智能代码;一个关于格陵兰冰盖裂缝和排水湖泊的全面且免费的数据库;以及 (5) 一个名为 COMPACT(社区主导的冰冻圈受训者指导计划)的社区主导的指导计划,该计划将促进内部的多导师网络总体而言,这项研究将帮助我们了解冰盖如何应对气候变化。冰盖表面形成的融水可以渗入连接冰盖表面和冰盖的冰臼和裂缝。格陵兰冰盖上普遍存在冰床到冰床的融水路径,润滑冰盖底部并影响其动态。然而,我们目前缺乏整个大陆的冰臼、裂缝和排水湖泊的地图。利用深度学习技术自动检测和绘制冰盖表面特征可以极大地增强冰川学界分析高分辨率卫星图像的能力,从而获得新的发现。深度神经网络,该项目旨在生成全大陆表面特征数据库,可用于对冰盖条件进行机械建模,从而创建新的地表到冰床路径及其对冰盖动力学影响的能力。特征检测到冰盖规模可以丰富遥感和建模社区,该项目将促进美英合作,涉及初级首席研究员、博士后研究人员和研究生。该项目旨在开发开源深度学习代码和遥感算法。以及更广泛的冰川学界的冰下水文模型代码,由此产生的格陵兰冰盖地表到冰床路径位置和冰上湖泊排水日期和位置的数据库将开源。主要研究人员还将合作建立一个社区。领导辅导计划这项研究的社会效益将是更好地了解冰盖过程并提高预测气候变暖时冰盖变化的能力。了解格陵兰冰盖不断变化的水文仍然是一个重要的话题,因为它反映了通过水力压裂融水排出在冰盖对不断扩大的消融区域的动态响应中可能发挥的未知但可能重要的作用。该奖项通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ching-Yao Lai其他文献
Fluid-Structure Interactions for Energy and the Environment
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ching-Yao Lai - 通讯作者:
Ching-Yao Lai
Ching-Yao Lai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ching-Yao Lai', 18)}}的其他基金
Collaborative Research: NSFGEO-NERC: Understanding surface-to-bed meltwater pathways across the Greenland Ice Sheet using machine-learning and physics-based models
合作研究:NSFGEO-NERC:使用机器学习和基于物理的模型了解格陵兰冰盖的地表到床层融水路径
- 批准号:
2235051 - 财政年份:2023
- 资助金额:
$ 41.11万 - 项目类别:
Standard Grant
相似国自然基金
基于FRET受体上升时间的单分子高精度测量方法研究
- 批准号:22304184
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
- 批准号:52373161
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
- 批准号:82304416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
- 批准号:82373255
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
- 批准号:82300623
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
- 批准号:
2317936 - 财政年份:2024
- 资助金额:
$ 41.11万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
- 批准号:
2334798 - 财政年份:2024
- 资助金额:
$ 41.11万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 41.11万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
- 批准号:
2334541 - 财政年份:2024
- 资助金额:
$ 41.11万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
- 批准号:
2317938 - 财政年份:2024
- 资助金额:
$ 41.11万 - 项目类别:
Continuing Grant